Mixed-mode dynamic crack propagation in rocks with contact-separation mode transitions

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We propose an interfacial contact/damage model for simulating dynamic fracture in rocks. An interfacial damage parameter, D, models the evolution of damage on fracture interfaces, while relative contact and contact-stick fractions model contact-separation and stick-slip transitions. The damage rate is determined by an effective stress, written as a scalar function of the normal and tangential components of the Riemann traction solution for assumed bonded conditions. We propose alternative definitions of the effective stress that generate failure criteria that resemble the Tresca and Mohr-Coulomb criteria for compressive stress states, and we compare their compressive strengths and fracture angles under a compressive loading. We adopt a stochastic Weibull model for crack-nucleation in which cracks nucleate at points where the effective stress exceeds the probabilistic fracture strength. We implement the nucleation model with an h-adaptive asynchronous spacetime discontinuous Galerkin (aSDG) method that captures accurately the complex fracture patterns that arise under dynamic loading conditions. Numerical examples illustrate the effects on fracture response of varying the stochastic nucleation parameters and the alternative definitions of the effective stress.

Original languageEnglish (US)
Title of host publication51st US Rock Mechanics / Geomechanics Symposium 2017
PublisherAmerican Rock Mechanics Association (ARMA)
Pages2509-2520
Number of pages12
ISBN (Electronic)9781510857582
StatePublished - 2017
Event51st US Rock Mechanics / Geomechanics Symposium 2017 - San Francisco, United States
Duration: Jun 25 2017Jun 28 2017

Publication series

Name51st US Rock Mechanics / Geomechanics Symposium 2017
Volume4

Other

Other51st US Rock Mechanics / Geomechanics Symposium 2017
Country/TerritoryUnited States
CitySan Francisco
Period6/25/176/28/17

ASJC Scopus subject areas

  • Geochemistry and Petrology
  • Geophysics

Fingerprint

Dive into the research topics of 'Mixed-mode dynamic crack propagation in rocks with contact-separation mode transitions'. Together they form a unique fingerprint.

Cite this