Mixed discontinuous Galerkin methods for darcy flow

F. Brezzi, T. J.R. Hughes, L. D. Marini, A. Masud

Research output: Contribution to journalArticlepeer-review

Abstract

We consider a family of mixed finite element discretizations of the Darcy flow equations using totally discontinuous elements (both for the pressure and the flux variable). Instead of using a jump stabilization as it is usually done for discontinuos Galerkin (DG) methods (see e.g. D.N. Arnold et al. SIAM J. Numer. Anal.39, 1749-1779 (2002) and B. Cockburn, G.E. Karniadakis and C.-W. Shu, DG methods: Theory, computation and applications, (Springer, Berlin, 2000) and the references therein) we use the stabilization introduced in A. Masud and T.J.R. Hughes, Meth. Appl. Mech. Eng.191, 4341-4370 (2002) and T.J.R. Hughes, A. Masud, and J. Wan, (in preparation). We show that such stabilization works for discontinuous elements as well, provided both the pressure and the flux are approximated by local polynomials of degree ≥ 1, without any need for additional jump terms. Surprisingly enough, after the elimination of the flux variable, the stabilization of A. Masud and T.J.R. Hughes, Meth. Appl. Mech. Eng.191, 4341-4370 (2002) and T.J.R. Hughes, A. Masud, and J. Wan, (in preparation) turns out to be in some cases a sort of jump stabilization itself, and in other cases a stable combination of two originally unstable DG methods (namely, Bassi-Rebay F. Bassi and S. Rebay, Proceedings of the Conference ''Numerical methods for fluid dynamics V'', Clarendon Press, Oxford (1995) and Baumann-Oden Comput. Meth. Appl. Mech. Eng.175, 311-341 (1999).

Original languageEnglish (US)
Pages (from-to)119-145
Number of pages27
JournalJournal of Scientific Computing
Volume22-23
DOIs
StatePublished - Jan 1 2005
Externally publishedYes

Keywords

  • Darcy flow
  • Discontinuous finite elements
  • Stabilizations

ASJC Scopus subject areas

  • Software
  • Theoretical Computer Science
  • Numerical Analysis
  • Engineering(all)
  • Computational Theory and Mathematics
  • Computational Mathematics
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Mixed discontinuous Galerkin methods for darcy flow'. Together they form a unique fingerprint.

Cite this