Abstract
We consider a decentralized bidirectional control of a platoon of N identical vehicles moving in a straight line. The control objective is for each vehicle to maintain a constant velocity and inter-vehicular separation using only the local information from itself and its two nearest neighbors. Each vehicle is modeled as a double integrator. To aid the analysis, we use continuous approximation to derive a partial differential equation (PDE) approximation of the discrete platoon dynamics. The PDE model is used to explain the progressive loss of closed-loop stability with increasing number of vehicles, and to devise ways to combat this loss of stability.
Original language | English (US) |
---|---|
Pages (from-to) | 2100-2113 |
Number of pages | 14 |
Journal | IEEE Transactions on Automatic Control |
Volume | 54 |
Issue number | 9 |
DOIs | |
State | Published - 2009 |
Keywords
- Partial differential equation (PDE)
ASJC Scopus subject areas
- Control and Systems Engineering
- Computer Science Applications
- Electrical and Electronic Engineering