TY - GEN
T1 - Mission analysis and component-level sensitivity study of hybrid-electric general aviation propulsion systems
AU - Dean, Tyler S.
AU - Wroblewski, Gabrielle E.
AU - Ansell, Phillip J.
N1 - Publisher Copyright:
© 2018, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.
PY - 2018
Y1 - 2018
N2 - The system-level capabilities and component-level sensitivities of hybrid-electric propulsion systems were analyzed by modeling a twin-engine general aviation aircraft. The flight performance model was developed using performance variables for the Tecnam P2006T found in published articles authored by the aircraft manufacturer. Both parallel and series hybrid-electric drivetrains were integrated into the aircraft performance model, and performance data were produced for various missions, degrees of electrification, battery specific energy densities, and electric motor power densities. The results quantified the improvements in battery specific energy density and electric motor power density necessary to make specific mission ranges feasible for several variants of each hybrid architecture. It was found that current technology allows a parallel hybrid configuration to achieve a maximum theoretical range of approximately 250 nmi. The results also indicated that parallel hybrid architectures will offer an effective near-term configuration, by offering greater range performance than a series hybrid with incremental future advancements in battery specific energy density and electric motor power density. However, distant future advancements in these technologies will allow series-hybrid architectures to produce similar range capabilities with improved fuel economy over parallel-hybrid architectures.
AB - The system-level capabilities and component-level sensitivities of hybrid-electric propulsion systems were analyzed by modeling a twin-engine general aviation aircraft. The flight performance model was developed using performance variables for the Tecnam P2006T found in published articles authored by the aircraft manufacturer. Both parallel and series hybrid-electric drivetrains were integrated into the aircraft performance model, and performance data were produced for various missions, degrees of electrification, battery specific energy densities, and electric motor power densities. The results quantified the improvements in battery specific energy density and electric motor power density necessary to make specific mission ranges feasible for several variants of each hybrid architecture. It was found that current technology allows a parallel hybrid configuration to achieve a maximum theoretical range of approximately 250 nmi. The results also indicated that parallel hybrid architectures will offer an effective near-term configuration, by offering greater range performance than a series hybrid with incremental future advancements in battery specific energy density and electric motor power density. However, distant future advancements in these technologies will allow series-hybrid architectures to produce similar range capabilities with improved fuel economy over parallel-hybrid architectures.
UR - http://www.scopus.com/inward/record.url?scp=85141593708&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85141593708&partnerID=8YFLogxK
U2 - 10.2514/6.2018-1749
DO - 10.2514/6.2018-1749
M3 - Conference contribution
AN - SCOPUS:85141593708
SN - 9781624105241
T3 - AIAA Aerospace Sciences Meeting, 2018
BT - AIAA Aerospace Sciences Meeting
PB - American Institute of Aeronautics and Astronautics Inc, AIAA
T2 - AIAA Aerospace Sciences Meeting, 2018
Y2 - 8 January 2018 through 12 January 2018
ER -