Minimum-cost coverage of point sets by disks

Helmut Alt, Jeff Erickson, Jonathan Lenchner, Esther M. Arkin, Sándor P. Fekete, Joseph S.B. Mitchell, Hervé Brönnimann, Christian Knauer, Kim Whittlesey

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We consider a class of geometric facility location problems in which the goal is to determine a set X of disks given by their centers (tj) and radii (rj) that cover a given set of demand points Y ⊂ ℝ2 at the smallest possible cost. We consider cost functions of the form Σjf(rj), where f(r) = rα is the cost of transmission to radius r. Special cases arise for α = 1 (sum of radii) and α = 2 (total area); power consumption models in wireless network design often use an exponent α > 2. Different scenarios arise according to possible restrictions on the transmission centers tj, which may be constrained to belong to a given discrete set or to lie on a line, etc. We obtain several new results, including (a) exact and approximation algorithms for selecting transmission points tj on a given line in order to cover demand points Y ⊂ ℝ2; (b) approximation algorithms (and an algebraic intractability result) for selecting an optimal line on which to place transmission points to cover Y; (c) a proof of NP-hardness for a discrete set of transmission points in ℝ2 and any fixed α > 1; and (d) a polynomial-time approximation scheme for the problem of computing a minimum cost covering tour (MCCT), in which the total cost is a linear combination of the transmission cost for the set of disks and the length of a tour/path that connects the centers of the disks.

Original languageEnglish (US)
Title of host publicationProceedings of the Twenty-Second Annual Symposium on Computational Geometry 2006, SCG'06
PublisherAssociation for Computing Machinery
Pages449-458
Number of pages10
ISBN (Print)1595933409, 9781595933409
DOIs
StatePublished - 2006
Event22nd Annual Symposium on Computational Geometry 2006, SCG'06 - Sedona, AZ, United States
Duration: Jun 5 2006Jun 7 2006

Publication series

NameProceedings of the Annual Symposium on Computational Geometry
Volume2006

Other

Other22nd Annual Symposium on Computational Geometry 2006, SCG'06
Country/TerritoryUnited States
CitySedona, AZ
Period6/5/066/7/06

Keywords

  • Approximation
  • Complexity
  • Covering problems
  • Geometric optimization
  • Tour problems

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Geometry and Topology
  • Computational Mathematics

Fingerprint

Dive into the research topics of 'Minimum-cost coverage of point sets by disks'. Together they form a unique fingerprint.

Cite this