Minimizing human effort in interactive tracking by incremental learning of model parameters

Arridhana Ciptadi, James M. Rehg

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We address the problem of minimizing human effort in interactive tracking by learning sequence-specific model parameters. Determining the optimal model parameters for each sequence is a critical problem in tracking. We demonstrate that by using the optimal model parameters for each sequence we can achieve high precision tracking results with significantly less effort. We leverage the sequential nature of interactive tracking to formulate an efficient method for learning model parameters through a maximum margin framework. By using our method we are able to save ~60 - 90% of human effort to achieve high precision on two datasets: the VIRAT dataset and an Infant-Mother Interaction dataset.

Original languageEnglish (US)
Title of host publication2015 International Conference on Computer Vision, ICCV 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4382-4390
Number of pages9
ISBN (Electronic)9781467383912
DOIs
StatePublished - Feb 17 2015
Externally publishedYes
Event15th IEEE International Conference on Computer Vision, ICCV 2015 - Santiago, Chile
Duration: Dec 11 2015Dec 18 2015

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
Volume2015 International Conference on Computer Vision, ICCV 2015
ISSN (Print)1550-5499

Other

Other15th IEEE International Conference on Computer Vision, ICCV 2015
Country/TerritoryChile
CitySantiago
Period12/11/1512/18/15

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Minimizing human effort in interactive tracking by incremental learning of model parameters'. Together they form a unique fingerprint.

Cite this