Mind your inflections! Improving NLP for non-standard Englishes with base-inflection encoding

Samson Tan, Shafiq Joty, Lav R. Varshney, Min Yen Kan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Inflectional variation is a common feature of World Englishes such as Colloquial Singapore English and African American Vernacular English. Although comprehension by human readers is usually unimpaired by nonstandard inflections, current NLP systems are not yet robust. We propose Base-Inflection Encoding (BITE), a method to tokenize English text by reducing inflected words to their base forms before reinjecting the grammatical information as special symbols. Fine-tuning pretrained NLP models for downstream tasks using our encoding defends against inflectional adversaries while maintaining performance on clean data. Models using BITE generalize better to dialects with non-standard inflections without explicit training and translation models converge faster when trained with BITE. Finally, we show that our encoding improves the vocabulary efficiency of popular data-driven subword tokenizers. Since there has been no prior work on quantitatively evaluating vocabulary efficiency, we propose metrics to do so.

Original languageEnglish (US)
Title of host publicationEMNLP 2020 - 2020 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference
PublisherAssociation for Computational Linguistics (ACL)
Pages5647-5663
Number of pages17
ISBN (Electronic)9781952148606
StatePublished - 2020
Event2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020 - Virtual, Online
Duration: Nov 16 2020Nov 20 2020

Publication series

NameEMNLP 2020 - 2020 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference

Conference

Conference2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020
CityVirtual, Online
Period11/16/2011/20/20

ASJC Scopus subject areas

  • Information Systems
  • Computer Science Applications
  • Computational Theory and Mathematics

Fingerprint

Dive into the research topics of 'Mind your inflections! Improving NLP for non-standard Englishes with base-inflection encoding'. Together they form a unique fingerprint.

Cite this