MIMO H control of a parallel kinematic XYZ nano-positioner

Research output: Chapter in Book/Report/Conference proceedingConference contribution


This paper presents the design, model identification and control of a parallel-kinematics XYZ nano positioning stage for general nano-manipulation and nano-manufacturing applications. The stage features a low degree of freedom monolithic parallel kinematic mechanism with flexure joints. The stage is driven by piezoelectric actuators and its displacement is detected by capacitance gauges. The control loop is closed at the end-effector instead of the each joint, so as to avoid calibration difficulties and guarantee high positioning accuracy. Instead of a single input and single output (SISO) system with joint space control configuration, this design has strongly coupled dynamics with each actuator input producing along multiple axes. The nano-positioner is modeled as a multiple input and multiple output (MIMO) system, where the control design forms an important constituent that accounts for the strongly coupled dynamics. The dynamics that model the MIMO plant is identified by time-domain identification method. A pseudo-random binary signal is used to excite the system while avoiding violent vibrations at resonant frequencies, which comes from the low damping feature of flexure based structure. The order of the model is reduced to make controller efficient and implementable. The control design based on modern robust control theory that gives a high bandwidth closed loop nanopositioning system which is robust to physical model uncertainties arising from flexure-based mechanisms is presented. The nonlinear effects from piezoelectric actuators, such as hysteresis and creep, are compensated effectively by closed loop robust controller. The bandwidth, resolution and repeatability are characterized experimentally, which demonstrate the effectiveness of the robust control approach.

Original languageEnglish (US)
Title of host publicationProceedings of the ASME International Mechanical Engineering Congress and Exposition, IMECE 2007
Number of pages9
StatePublished - May 30 2008
EventASME International Mechanical Engineering Congress and Exposition, IMECE 2007 - Seattle, WA, United States
Duration: Nov 11 2007Nov 15 2007

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings
Volume11 PART A


OtherASME International Mechanical Engineering Congress and Exposition, IMECE 2007
Country/TerritoryUnited States
CitySeattle, WA


  • MIMO system
  • Nano positioning
  • Parallel kinematic mechanism
  • Robust control

ASJC Scopus subject areas

  • General Engineering


Dive into the research topics of 'MIMO H control of a parallel kinematic XYZ nano-positioner'. Together they form a unique fingerprint.

Cite this