Abstract
This work addresses the issues of coating of oxide fibers or laminates with debondable oxide interphases. It fabricates a model system for an alumina matrix reinforced with alumina fibers, wherein an enstatite interphase is transformation weakened, resulting in interphase debonding. A suitable multilayer coating sequence was chosen to act as a chemical bridge between the alumina fiber and matrix. The pulsed excimer laser ablation method (KrF excimer laser of λ = 248 nm) was used to deposit several oxide materials individually onto silicon wafers. Titania (TiO2 or T), aluminum titanate (Al2O3 · TiO2, Al2TiO5 or AT), and enstatite (MgO · SiO2, MgSiO3 or EN) layers were deposited from sintered target materials. X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy investigations indicated that as-deposited coatings were amorphous or partially crystallized into nanosize grains, and their thicknesses were uniformly distributed over the Si-substrate, growing in columnar texture (although not as pronounced for enstatite). Transmission electron microscopy/energy dispersive spectroscopy analysis confirmed that the chemical composition of the coating materials was the same as that of the target materials and that the coatings were completely crystallized into nano- or submicrometer grain size after annealing at 1200°C for 1 h. With these data, sapphire monofilaments were sequentially coated with five layers of Al2TiO5, TiO2, MgSiO3, TiO2, and Al2TiO5. This construction provided a chemical bridge between the alumina monofilament and the enstatite debondable interphase.
Original language | English (US) |
---|---|
Pages (from-to) | 1623-1630 |
Number of pages | 8 |
Journal | Journal of Materials Research |
Volume | 18 |
Issue number | 7 |
DOIs | |
State | Published - Jul 2003 |
ASJC Scopus subject areas
- General Materials Science
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering