Microstructural effects on low cycle fatigue of Sn-3.8Ag-0.7Cu Pb-free solder

Qiu Lian Zeng, Zhong Guang Wang, J. K. Shang

Research output: Contribution to journalArticlepeer-review


Low cycle fatigue behavior of Sn-3.8Ag-0.7Cu solder was investigated under fully reversed cyclic loading, with particular emphasis on microstructural effects. The LCF behavior of the solder with equiaxed microstructure was found to differ greatly from that of the solder with a dendrite microstructure. At a given total strain amplitude, the dendrite microstructure exhibited a much longer fatigue life than the equiaxed microstructure. Such a strong microstructural effect on fatigue life arose from the difference in cyclic deformation and fracture mechanisms between the two microstructures. A large number of microcracks along grain boundaries of the equiaxed structure solder developed with increasing cycling, while for the dendrite structure solder, cyclic deformation took place along the direction of the maximal shear stress during fatigue tests and microcracks initiated and propagated along shear deformation bands. Besides, the fatigue behavior of the dendritic microstructure was very sensitive to cyclic frequency whereas the fatigue behavior of the equiaxed microstructure showed less sensitivity to cyclic frequency.

Original languageEnglish (US)
Pages (from-to)239-242
Number of pages4
JournalKey Engineering Materials
Volume345-346 I
StatePublished - 2007


  • Deformation mechanism
  • Fatigue life
  • Low cycle fatigue(LCF)
  • Microstructural effect
  • SnAgCu lead-free solder

ASJC Scopus subject areas

  • Materials Science(all)
  • Mechanics of Materials
  • Mechanical Engineering


Dive into the research topics of 'Microstructural effects on low cycle fatigue of Sn-3.8Ag-0.7Cu Pb-free solder'. Together they form a unique fingerprint.

Cite this