TY - JOUR
T1 - Microphysical and thermodynamic structure and evolution of the trailing stratiform regions of mesoscale convective systems during BAMEX. Part II
T2 - Column model simulations
AU - Grim, Joseph A.
AU - McFarquhar, Greg M.
AU - Rauber, Robert M.
AU - Smith, Andrea M.
AU - Jewett, Brian F.
PY - 2009
Y1 - 2009
N2 - This study employed a nondynamic microphysical column model to evaluate the degree to which the microphysical processes of sublimation, melting, and evaporation alone can explain the evolution of the relative humidity (RH) and latent cooling profiles within the trailing stratiform region of mesoscale convective systems observed during the Bow Echo and Mesoscale Convective Vortex Experiment (BAMEX). Simulations revealed that observations of a sharp change in the profile of RH, from saturated air with respect to ice above the melting layer to subsaturated air with respect to water below, developed in response to the rapid increase in hydrometeor fall speeds from 1-2 m s-1 for ice to 2-11 m s-1 for rain. However, at certain times and locations, such as the first spiral descent on 29 June 2003 within the notch of lower reflectivity, the air may remain subsaturated for temperatures (T) < 0°C. Sufficiently strong downdrafts above the melting level, such as the 1-3 m s-1 downdrafts observed in the notch of lower reflectivity on 29 June, could enable this state of sustained subsaturation. Sensitivity tests, where the hydrometeor size distributions and upstream RH profiles were varied within the range of BAMEX observations, revealed that the sharp contrast in the RH field across the melting layer always developed. The simulations also revealed that latent cooling from sublimation and melting resulted in the strongest cooling at altitudes within and above the melting layer for locations where hydrometeors did not reach the ground, such as within the rear anvil region, and where sustained subsaturated air is present for T < 0°C, such as is observed within downdrafts. Within the enhanced stratiform rain region, the air is typically at or near saturation for T < 0°C, whereas it is typically subsaturated for T > 0°C; thus, evaporation and melting result in the primary cooling in this region. The implications of these results for the descent of the rear inflow jet across the trailing stratiform region are discussed.
AB - This study employed a nondynamic microphysical column model to evaluate the degree to which the microphysical processes of sublimation, melting, and evaporation alone can explain the evolution of the relative humidity (RH) and latent cooling profiles within the trailing stratiform region of mesoscale convective systems observed during the Bow Echo and Mesoscale Convective Vortex Experiment (BAMEX). Simulations revealed that observations of a sharp change in the profile of RH, from saturated air with respect to ice above the melting layer to subsaturated air with respect to water below, developed in response to the rapid increase in hydrometeor fall speeds from 1-2 m s-1 for ice to 2-11 m s-1 for rain. However, at certain times and locations, such as the first spiral descent on 29 June 2003 within the notch of lower reflectivity, the air may remain subsaturated for temperatures (T) < 0°C. Sufficiently strong downdrafts above the melting level, such as the 1-3 m s-1 downdrafts observed in the notch of lower reflectivity on 29 June, could enable this state of sustained subsaturation. Sensitivity tests, where the hydrometeor size distributions and upstream RH profiles were varied within the range of BAMEX observations, revealed that the sharp contrast in the RH field across the melting layer always developed. The simulations also revealed that latent cooling from sublimation and melting resulted in the strongest cooling at altitudes within and above the melting layer for locations where hydrometeors did not reach the ground, such as within the rear anvil region, and where sustained subsaturated air is present for T < 0°C, such as is observed within downdrafts. Within the enhanced stratiform rain region, the air is typically at or near saturation for T < 0°C, whereas it is typically subsaturated for T > 0°C; thus, evaporation and melting result in the primary cooling in this region. The implications of these results for the descent of the rear inflow jet across the trailing stratiform region are discussed.
UR - http://www.scopus.com/inward/record.url?scp=68249149279&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=68249149279&partnerID=8YFLogxK
U2 - 10.1175/2008MWR2505.1
DO - 10.1175/2008MWR2505.1
M3 - Article
AN - SCOPUS:68249149279
SN - 0027-0644
VL - 137
SP - 1186
EP - 1205
JO - Monthly Weather Review
JF - Monthly Weather Review
IS - 4
ER -