## Abstract

The problem of the determination of stochastic constitutive laws for input to continuum-type boundary value problems is analyzed from the standpoint of the micromechanics of polycrystals and matrix-inclusion composites. Passage to a sought-for random continuum is based on a scale dependent window playing the role of a Representative Volume Element (RVE). It turns out that an elastic microstructure with piecewise continuous realizations of random tensor fields of stiffness cannot be uniquely approximated by a random field of stiffness with continuous realizations. Rather, two random continuum fields may be introduced to bound the material response from above and from below. As the size of the RVE relative to the crystal size increases to infinity, both fields converge to a deterministic continuum with a progressively decreasing strength of fluctuations. Since the RVE corresponds to a single finite element cell not infinitely larger than the crystal size, two random fields are to be used to bound the solution of a given boundary value problem at a given scale of resolution. The method applies to a number of other elastic microstructures, and provides the basis for stochastic finite differences and elements. The latter point is illustrated by an example of a stochastic boundary value problem of a heterogeneous membrane.

Original language | English (US) |
---|---|

Pages (from-to) | 107-114 |

Number of pages | 8 |

Journal | Probabilistic Engineering Mechanics |

Volume | 8 |

Issue number | 2 |

DOIs | |

State | Published - 1993 |

Externally published | Yes |

## ASJC Scopus subject areas

- Statistical and Nonlinear Physics
- Civil and Structural Engineering
- Nuclear Energy and Engineering
- Condensed Matter Physics
- Aerospace Engineering
- Ocean Engineering
- Mechanical Engineering