TY - JOUR
T1 - Micromechanical characterization of a wheat-based food material as a function of moisture content
AU - Martinez, Karla Cecilia Cisneros
AU - Nemati, Ramin
AU - Takhar, Pawan Singh
N1 - Publisher Copyright:
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
PY - 2024/9
Y1 - 2024/9
N2 - The microstructural changes in food materials during the baking process directly influence their micromechanical properties and, thus, the strength of the solid walls. Baking time, as one of the vital variables, impacts the microstructural and micromechanical characteristics, alters the texture, and affects customer satisfaction. This research aims to investigate the alteration in three critical micromechanical properties: hardness, stiffness, and Young’s modulus, as a function of moisture content during baking of cookies in an oven set at 185 ± 1 °C in the range of 10 to 60-min. The nanoindentation method, which involves pushing a nanoindenter into and removing it from cookie samples to measure the force-displacement data, was employed to measure the micromechanical properties. The results indicated that all the micromechanical properties initially increased when the moisture content decreased from 12.26 to 8.53 g/100 g solids and showed fluctuating trends at the later moisture content values. Throughout the baking process, the moisture content ranges from 2.71 to 12.26 g/100 g solids. Simultaneously, hardness varies from 0.28 to 0.88 GPa, stiffness ranges between 9.77 and 20.16 µN/nm, and Young’s modulus experiences minimum and maximum values of 4.34 and 14.55 GPa, respectively. Finally, the Analysis of Variance and Duncan’s multiple range tests revealed a significant difference between the mean values of some data points of hardness, stiffness, and Young’s modulus as a function of moisture content.
AB - The microstructural changes in food materials during the baking process directly influence their micromechanical properties and, thus, the strength of the solid walls. Baking time, as one of the vital variables, impacts the microstructural and micromechanical characteristics, alters the texture, and affects customer satisfaction. This research aims to investigate the alteration in three critical micromechanical properties: hardness, stiffness, and Young’s modulus, as a function of moisture content during baking of cookies in an oven set at 185 ± 1 °C in the range of 10 to 60-min. The nanoindentation method, which involves pushing a nanoindenter into and removing it from cookie samples to measure the force-displacement data, was employed to measure the micromechanical properties. The results indicated that all the micromechanical properties initially increased when the moisture content decreased from 12.26 to 8.53 g/100 g solids and showed fluctuating trends at the later moisture content values. Throughout the baking process, the moisture content ranges from 2.71 to 12.26 g/100 g solids. Simultaneously, hardness varies from 0.28 to 0.88 GPa, stiffness ranges between 9.77 and 20.16 µN/nm, and Young’s modulus experiences minimum and maximum values of 4.34 and 14.55 GPa, respectively. Finally, the Analysis of Variance and Duncan’s multiple range tests revealed a significant difference between the mean values of some data points of hardness, stiffness, and Young’s modulus as a function of moisture content.
KW - Cookie
KW - Hardness
KW - Nanoindentation
KW - Stiffness
KW - Young’s modulus
UR - http://www.scopus.com/inward/record.url?scp=85199353764&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85199353764&partnerID=8YFLogxK
U2 - 10.1007/s11694-024-02760-y
DO - 10.1007/s11694-024-02760-y
M3 - Article
AN - SCOPUS:85199353764
SN - 2193-4126
VL - 18
SP - 7728
EP - 7738
JO - Journal of Food Measurement and Characterization
JF - Journal of Food Measurement and Characterization
IS - 9
ER -