Microfluidic systems for studying neurotransmitters and neurotransmission

Callie A. Croushore, Jonathan V. Sweedler

Research output: Contribution to journalReview articlepeer-review

Abstract

Neurotransmitters and neuromodulators are molecules within the nervous system that play key roles in cell-to-cell communication. Upon stimulation, neurons release these signaling molecules, which then act at local or distant locations to elicit a physiological response. Ranging from small molecules, such as diatomic gases and amino acids, to larger peptides, these chemical messengers are involved in many functional processes including growth, reproduction, memory and behavior. Understanding signaling molecules and the conditions that govern their release in healthy or damaged networks promises to deliver insights into neural network formation and function. Microfluidic devices can provide optimal cell culture conditions, reduced volume systems, and precise control over the chemical and physical nature of the extracellular environment, making them well-suited for studying neurotransmission and other forms of cell-to-cell signaling. Here we review selected microfluidic approaches that are suitable for monitoring cell-to-cell signaling molecules. We highlight devices that improve in vivo sample collection as well as compartmentalized devices designed to isolate individual neurons or co-cultures in vitro, including a focus on systems used for studying neural injury and regeneration, and devices that allow selective chemical stimulations and the characterization of released molecules.

Original languageEnglish (US)
Pages (from-to)1666-1676
Number of pages11
JournalLab on a chip
Volume13
Issue number9
DOIs
StatePublished - May 7 2013

ASJC Scopus subject areas

  • Bioengineering
  • Biochemistry
  • General Chemistry
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'Microfluidic systems for studying neurotransmitters and neurotransmission'. Together they form a unique fingerprint.

Cite this