MICO: A Multi-alternative Contrastive Learning Framework for Commonsense Knowledge Representation

Ying Su, Zihao Wang, Tianqing Fang, Hongming Zhang, Yangqiu Song, Tong Zhang

Research output: Contribution to conferencePaperpeer-review

Abstract

Commonsense reasoning tasks such as commonsense knowledge graph completion and commonsense question answering require powerful representation learning. In this paper, we propose to learn commonsense knowledge representation by MICO, a Multi-alternative contrastIve learning framework on COmmonsense knowledge graphs (MICO). MICO generates the commonsense knowledge representation by contextual interaction between entity nodes and relations with multi-alternative contrastive learning. In MICO, the head and tail entities in an (h, r, t) knowledge triple are converted to two relation-aware sequence pairs (a premise and an alternative) in the form of natural language. Semantic representations generated by MICO can benefit the following two tasks by simply comparing the distance score between the representations: 1) zero-shot commonsense question answering task; 2) inductive commonsense knowledge graph completion task. Extensive experiments show the effectiveness of our method.

Original languageEnglish (US)
Pages1339-1351
Number of pages13
StatePublished - 2022
Externally publishedYes
Event2022 Findings of the Association for Computational Linguistics: EMNLP 2022 - Abu Dhabi, United Arab Emirates
Duration: Dec 7 2022Dec 11 2022

Conference

Conference2022 Findings of the Association for Computational Linguistics: EMNLP 2022
Country/TerritoryUnited Arab Emirates
CityAbu Dhabi
Period12/7/2212/11/22

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Computer Science Applications
  • Information Systems

Fingerprint

Dive into the research topics of 'MICO: A Multi-alternative Contrastive Learning Framework for Commonsense Knowledge Representation'. Together they form a unique fingerprint.

Cite this