Methyl Jasmonate and 1-Methylcyclopropene Treatment Effects on Quinone Reductase Inducing Activity and Post-Harvest Quality of Broccoli

Kang Mo Ku, Jeong Hee Choi, Hyoung Seok Kim, Mosbah M. Kushad, Elizabeth H. Jeffery, John A. Juvik

Research output: Contribution to journalArticlepeer-review

Abstract

Effect of pre-harvest methyl jasmonate (MeJA) and post-harvest 1-methylcyclopropene (1-MCP) treatments on broccoli floret glucosinolate (GS) concentrations and quinone reductase (QR, an in vitro anti-cancer biomarker) inducing activity were evaluated two days prior to harvest, at harvest and at 10, 20, and 30 days of post-harvest storage at 4 °C. MeJA treatments four days prior to harvest of broccoli heads was observed to significantly increase floret ethylene biosynthesis resulting in chlorophyll catabolism during post-harvest storage and reduced product quality. Post-harvest treatment with 1-methylcyclopropene (1-MCP), which competitively binds to protein ethylene receptors, maintained post-harvest floret chlorophyll concentrations and product visual quality in both control and MeJA-treated broccoli. Transcript abundance of BoPPH, a gene which is responsible for the synthesis of pheophytinase, the primary enzyme associated with chlorophyll catabolism in broccoli, was reduced by 1-MCP treatment and showed a significant, negative correlation with floret chlorophyll concentrations. The GS, glucobrassicin, neoglucobrassicin, and gluconasturtiin were significantly increased by MeJA treatments. The products of some of the GS from endogenous myrosinase hydrolysis [sulforaphane (SF), neoascorbigen (NeoASG), N-methoxyindole-3-carbinol (NI3C), and phenethyl isothiocyanate (PEITC)] were also quantified and found to be significantly correlated with QR. Sulforaphane, the isothiocyanate hydrolysis product of the GS glucoraphanin, was found to be the most potent QR induction agent. Increased sulforaphane formation from the hydrolysis of glucoraphanin was associated with up-regulated gene expression of myrosinase (BoMyo) and the myrosinase enzyme co-factor gene, epithiospecifier modifier1 (BoESM1). This study demonstrates the combined treatment of MeJA and 1-MCP increased QR activity without post-harvest quality loss.

Original languageEnglish (US)
Article numbere77127
JournalPloS one
Volume8
Issue number10
DOIs
StatePublished - Oct 16 2013

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Methyl Jasmonate and 1-Methylcyclopropene Treatment Effects on Quinone Reductase Inducing Activity and Post-Harvest Quality of Broccoli'. Together they form a unique fingerprint.

Cite this