TY - JOUR
T1 - Methods for computing nuclear magnetic resonance chemical shielding in large systems. Multiple cluster and charge field approaches
AU - de Dios, Angle C.
AU - Oldfield, Eric
PY - 1993/4/2
Y1 - 1993/4/2
N2 - Ab initio calculations show that additivity of the intermolecular shielding exists in a model system consisting of fluorobenzene interacting with hydrogen fluoride molecules, C6H5F(HF)n, where n=1-5. These results indicate that it should be possible to perform chemical shielding calculations on large system by dividing it into a series of smaller clusters. For M atoms divided into M/N clusters of N atoms, the time savings for large M is on the order of M3/16N3, a time savings of ≈ 60 for M= 100, N = 10. We demonstrate the feasibility of using point charges to model long-range electrostatic field effects on shielding by comparing the results of full ab initio calculations with those obtained by using point charges to represent the HF molecules in the C6H5F-(HF)n clusters. This comparison shows generally good agreement between the two approaches so long as the point charges are > 2.5 Å from all the atoms in the molecule to which the nucleus belongs, a situation which should pertain for many macromolecules. Addition of 1000 point charges to the C6H5F system increased computational time by only 50% and appears to offer promise for investigations of chemical shielding in proteins and nucleic acids, where both short-large (electronic) and longer-range (electrostatic field) effects may be important.
AB - Ab initio calculations show that additivity of the intermolecular shielding exists in a model system consisting of fluorobenzene interacting with hydrogen fluoride molecules, C6H5F(HF)n, where n=1-5. These results indicate that it should be possible to perform chemical shielding calculations on large system by dividing it into a series of smaller clusters. For M atoms divided into M/N clusters of N atoms, the time savings for large M is on the order of M3/16N3, a time savings of ≈ 60 for M= 100, N = 10. We demonstrate the feasibility of using point charges to model long-range electrostatic field effects on shielding by comparing the results of full ab initio calculations with those obtained by using point charges to represent the HF molecules in the C6H5F-(HF)n clusters. This comparison shows generally good agreement between the two approaches so long as the point charges are > 2.5 Å from all the atoms in the molecule to which the nucleus belongs, a situation which should pertain for many macromolecules. Addition of 1000 point charges to the C6H5F system increased computational time by only 50% and appears to offer promise for investigations of chemical shielding in proteins and nucleic acids, where both short-large (electronic) and longer-range (electrostatic field) effects may be important.
UR - http://www.scopus.com/inward/record.url?scp=0000762921&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0000762921&partnerID=8YFLogxK
U2 - 10.1016/0009-2614(93)85175-N
DO - 10.1016/0009-2614(93)85175-N
M3 - Article
AN - SCOPUS:0000762921
SN - 0009-2614
VL - 205
SP - 108
EP - 116
JO - Chemical Physics Letters
JF - Chemical Physics Letters
IS - 1
ER -