Methodology for nonlinear quantification of a flexible beam with a local, strong nonlinearity

Christopher A. Herrera, D. Michael McFarland, Lawrence Bergman, Alexander F. Vakakis

Research output: Contribution to journalArticlepeer-review


This study presents a methodology for nonlinear quantification, i.e., the identification of the linear and nonlinear regimes and estimation of the degree of nonlinearity, for a cantilever beam with a local, strongly nonlinear stiffness element. The interesting feature of this system is that it behaves linearly in the limits of extreme values of the nonlinear stiffness. An Euler-Bernoulli cantilever beam with two nonlinear configurations is used to develop and demonstrate the methodology. One configuration considers a cubic spring attached at a distance from the beam root to achieve a smooth nonlinear effect. The other configuration considers a vibro-impact element that generates non-smooth effects. Both systems have the property that, in the limit of small and large values of a configuration parameter, the system is almost linear and can be modeled as such with negligible error. For the beam with a cubic spring attachment, the forcing amplitude is the varied parameter, while for the vibro-impact beam, this parameter is the clearance between the very stiff stops and the beam at static equilibrium. Proper orthogonal decomposition is employed to obtain an optimal orthogonal basis used to describe the nonlinear system dynamics for varying parameter values. The frequencies of the modes that compose the basis are then estimated using the Rayleigh quotient. The variations of these frequencies are studied to identify parameter values for which the system behaves approximately linearly and those for which the dynamical response is highly nonlinear. Moreover, a criterion based on the Betti-Maxwell reciprocity theorem is used to verify the existence of nonlinear behavior for the set of parameter values suggested by the described methodology. The developed methodology is general and applicable to discrete or continuous systems with smooth or nonsmooth nonlinearities.

Original languageEnglish (US)
Pages (from-to)298-314
Number of pages17
JournalJournal of Sound and Vibration
StatePublished - Feb 3 2017


  • Nonlinear quantification
  • Proper orthogonal decomposition
  • Vibro-impact beam

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Mechanics of Materials
  • Acoustics and Ultrasonics
  • Mechanical Engineering


Dive into the research topics of 'Methodology for nonlinear quantification of a flexible beam with a local, strong nonlinearity'. Together they form a unique fingerprint.

Cite this