TY - PAT
T1 - Method for measuring absolute saturation of time-varying and other hemoglobin compartments
AU - Franceschini, Maria A.
AU - Fantini, Sergio
AU - Gratton, Enrico
N1 - This invention was made with Government support under Contract No. PHS5P4103155RR10966, CA57032 awarded by NIH. The Government has certain rights in the invention.
PY - 2001/4/10
Y1 - 2001/4/10
N2 - The present invention involves a time-resolved measurement method for the real time, non-invasive, simultaneous measurement of time-varying and other hemoglobin compartment saturation. This capability achieves absolute pulse oximetry and oximetry for tissue, without calibration based on a population of healthy people. Calculations conducted by the invention use quantitative measurement of tissue absorption spectrum for tissue saturation, and an amplitude of absorption oscillations for the time-varying hemoglobin compartments at various wavelengths. The invention illuminates tissue and senses light at predetermined distances apart on the tissue to be measured. Intensity and phase data are acquired from source-detector pairs to calculate absolute tissue optical properties from time-resolved measurement data, namely, a reduced scattering coefficient and an absorption coefficient. To determine time-varying hemoglobin compartment saturation, an amplitude is quantitatively calculated of absorption oscillations correlating variations of an average intensity of the source and detector pair by using the time-resolved measurement data.
AB - The present invention involves a time-resolved measurement method for the real time, non-invasive, simultaneous measurement of time-varying and other hemoglobin compartment saturation. This capability achieves absolute pulse oximetry and oximetry for tissue, without calibration based on a population of healthy people. Calculations conducted by the invention use quantitative measurement of tissue absorption spectrum for tissue saturation, and an amplitude of absorption oscillations for the time-varying hemoglobin compartments at various wavelengths. The invention illuminates tissue and senses light at predetermined distances apart on the tissue to be measured. Intensity and phase data are acquired from source-detector pairs to calculate absolute tissue optical properties from time-resolved measurement data, namely, a reduced scattering coefficient and an absorption coefficient. To determine time-varying hemoglobin compartment saturation, an amplitude is quantitatively calculated of absorption oscillations correlating variations of an average intensity of the source and detector pair by using the time-resolved measurement data.
M3 - Patent
M1 - 6216021
Y2 - 1999/06/04
ER -