TY - JOUR
T1 - Methionine Supply during Late-Gestation Triggers Offspring Sex-Specific Divergent Changes in Metabolic and Epigenetic Signatures in Bovine Placenta
AU - Batistel, Fernanda
AU - Alharthi, Abdulrahman S.
AU - Yambao, Rainie R.C.
AU - Elolimy, Ahmed A.
AU - Pan, Yuan Xiang
AU - Parys, Claudia
AU - Loor, Juan J.
N1 - Publisher Copyright:
© 2019 American Society for Nutrition.
PY - 2019/1/1
Y1 - 2019/1/1
N2 - Background Nonruminant male and female offspring respond differently to gestational nutrition, with placenta contributing to the underlying mechanisms. However, similar data are lacking in large ruminants. Objectives The aim of this study was to investigate the impact of methionine supply during late-gestation on metabolism and DNA methylation in placenta from cows carrying male or female calves. Methods During the last 28 d of pregnancy, cows were individually fed a control diet (CON) or the control diet plus rumen-protected d,l-methionine (MET; 0.9 g/kg dry matter intake). Placentomes collected at term were classified according to cow dietary treatment and offspring sex as follows: Male CON (n = 7), Male MET (n = 7), Female CON (n = 8), and Female MET (n = 8). Calf growth was measured until 9 wk of age. Targeted metabolomics, RT-PCR, global DNA methylation, and activity of selected enzymes in one-carbon metabolism and transsulfuration pathways were performed. Statistics were conducted via ANOVA using MIXED models. Results At birth, Male MET calves were heavier than Male CON calves (7.6%, P = 0.02), but body mass was similar at 9 wk of age. In contrast, compared with Female CON, Female MET calves had greater body mass at 9 wk of age (6.3%, P = 0.03). Compared with Male CON, placenta from Male MET calves had greater concentrations of tricarboxylic acid (TCA) cycle and transsulfuration intermediates (23-100%, P < 0.05), along with greater 5-methyltetrahydrofolatehomocysteine methyltransferase activity (67%, P = 0.03). Compared with Female CON, placenta from Female MET calves had greater concentrations of one-carbon metabolism intermediates (13-52%, P < 0.05). DNA methyltransferase 3A (DNMT3A) was upregulated (43%, P < 0.01) in placenta from Female MET compared with Female CON calves. Global DNA methylation was lower in placenta from Female MET compared with Female CON calves (45%, P = 0.06). Conclusions Methionine supply affects placental metabolism, DNA methylation, and body mass of the calf in a sex-specific manner, underscoring its importance as dietary methyl-donor for pregnant cows.
AB - Background Nonruminant male and female offspring respond differently to gestational nutrition, with placenta contributing to the underlying mechanisms. However, similar data are lacking in large ruminants. Objectives The aim of this study was to investigate the impact of methionine supply during late-gestation on metabolism and DNA methylation in placenta from cows carrying male or female calves. Methods During the last 28 d of pregnancy, cows were individually fed a control diet (CON) or the control diet plus rumen-protected d,l-methionine (MET; 0.9 g/kg dry matter intake). Placentomes collected at term were classified according to cow dietary treatment and offspring sex as follows: Male CON (n = 7), Male MET (n = 7), Female CON (n = 8), and Female MET (n = 8). Calf growth was measured until 9 wk of age. Targeted metabolomics, RT-PCR, global DNA methylation, and activity of selected enzymes in one-carbon metabolism and transsulfuration pathways were performed. Statistics were conducted via ANOVA using MIXED models. Results At birth, Male MET calves were heavier than Male CON calves (7.6%, P = 0.02), but body mass was similar at 9 wk of age. In contrast, compared with Female CON, Female MET calves had greater body mass at 9 wk of age (6.3%, P = 0.03). Compared with Male CON, placenta from Male MET calves had greater concentrations of tricarboxylic acid (TCA) cycle and transsulfuration intermediates (23-100%, P < 0.05), along with greater 5-methyltetrahydrofolatehomocysteine methyltransferase activity (67%, P = 0.03). Compared with Female CON, placenta from Female MET calves had greater concentrations of one-carbon metabolism intermediates (13-52%, P < 0.05). DNA methyltransferase 3A (DNMT3A) was upregulated (43%, P < 0.01) in placenta from Female MET compared with Female CON calves. Global DNA methylation was lower in placenta from Female MET compared with Female CON calves (45%, P = 0.06). Conclusions Methionine supply affects placental metabolism, DNA methylation, and body mass of the calf in a sex-specific manner, underscoring its importance as dietary methyl-donor for pregnant cows.
KW - DNA methylation
KW - amino acids
KW - dairy cow
KW - methyl donor
KW - placentome
UR - http://www.scopus.com/inward/record.url?scp=85060778248&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85060778248&partnerID=8YFLogxK
U2 - 10.1093/jn/nxy240
DO - 10.1093/jn/nxy240
M3 - Article
C2 - 30608595
AN - SCOPUS:85060778248
SN - 0022-3166
VL - 149
SP - 6
EP - 17
JO - Journal of Nutrition
JF - Journal of Nutrition
IS - 1
ER -