Metabolic remodeling of the human red blood cell membrane

Yong Keun Park, Catherine A. Best, Thorsten Auth, Nir S. Gov, Samuel A. Safran, Gabriel Popescu, Subra Suresh, Michael S. Feld

Research output: Contribution to journalArticlepeer-review


The remarkable deformability of the human red blood cell (RBC) results from the coupled dynamic response of the phospholipid bilayer and the spectrin molecular network. Here we present quantitative connections between spectrin morphology and membrane fluctuations of human RBCs by using dynamic full-field laser interferometry techniques. We present conclusive evidence that the presence of adenosine 5′-triphosphate (ATP) facilitates non-equilibrium dynamic fluctuations in the RBC membrane that are highly correlated with the biconcave shape of RBCs. Spatial analysis of the fluctuations reveals that these non-equilibrium membrane vibrations are enhanced at the scale of spectrin mesh size. Our results indicate that the dynamic remodeling of the coupled membranes powered by ATP results in non-equilibrium membrane fluctuations manifesting from both metabolic and thermal energies and also maintains the biconcave shape of RBCs.

Original languageEnglish (US)
Pages (from-to)1289-1294
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Issue number4
StatePublished - Jan 26 2010


  • ATP
  • Imaging technique
  • Membrane fluctuation
  • RBC
  • Spectrin

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Metabolic remodeling of the human red blood cell membrane'. Together they form a unique fingerprint.

Cite this