TY - JOUR
T1 - Metabolic engineering of non-pathogenic microorganisms for 2,3-butanediol production
AU - Lee, Jae Won
AU - Lee, Ye Gi
AU - Jin, Yong Su
AU - Rao, Christopher V.
N1 - Funding Information:
This work is supported by the DOE Center for Advanced Bioenergy and Bioproducts Innovation (U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research under Award Number DE-SC0018420). Any opinions, findings and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the U.S. Department of Energy.
Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2021/8
Y1 - 2021/8
N2 - Abstract: 2,3-Butanediol (2,3-BDO) is a promising commodity chemical with various industrial applications. While petroleum-based chemical processes currently dominate the industrial production of 2,3-BDO, fermentation-based production of 2,3-BDO provides an attractive alternative to chemical-based processes with regards to economic and environmental sustainability. The achievement of high 2,3-BDO titer, yield, and productivity in microbial fermentation is a prerequisite for the production of 2,3-BDO at large scales. Also, enantiopure production of 2,3-BDO production is desirable because 2,3-BDO stereoisomers have unique physicochemical properties. Pursuant to these goals, many metabolic engineering strategies to improve 2,3-BDO production from inexpensive sugars by Klebsiella oxytoca, Bacillus species, and Saccharomyces cerevisiae have been developed. This review summarizes the recent advances in metabolic engineering of non-pathogenic microorganisms to enable efficient and enantiopure production of 2,3-BDO. Key points: • K. oxytoca, Bacillus species, and S. cerevisiae have been engineered to achieve efficient 2,3-BDO production. • Metabolic engineering of non-pathogenic microorganisms enabled enantiopure production of 2,3-BDO. • Cost-effective 2,3-BDO production can be feasible by using renewable biomass.
AB - Abstract: 2,3-Butanediol (2,3-BDO) is a promising commodity chemical with various industrial applications. While petroleum-based chemical processes currently dominate the industrial production of 2,3-BDO, fermentation-based production of 2,3-BDO provides an attractive alternative to chemical-based processes with regards to economic and environmental sustainability. The achievement of high 2,3-BDO titer, yield, and productivity in microbial fermentation is a prerequisite for the production of 2,3-BDO at large scales. Also, enantiopure production of 2,3-BDO production is desirable because 2,3-BDO stereoisomers have unique physicochemical properties. Pursuant to these goals, many metabolic engineering strategies to improve 2,3-BDO production from inexpensive sugars by Klebsiella oxytoca, Bacillus species, and Saccharomyces cerevisiae have been developed. This review summarizes the recent advances in metabolic engineering of non-pathogenic microorganisms to enable efficient and enantiopure production of 2,3-BDO. Key points: • K. oxytoca, Bacillus species, and S. cerevisiae have been engineered to achieve efficient 2,3-BDO production. • Metabolic engineering of non-pathogenic microorganisms enabled enantiopure production of 2,3-BDO. • Cost-effective 2,3-BDO production can be feasible by using renewable biomass.
KW - 2,3-BDO stereoisomers
KW - 2,3-Butanediol (2,3-BDO)
KW - Bacillus species
KW - Klebsiella oxytoca
KW - Saccharomyces cerevisiae
UR - http://www.scopus.com/inward/record.url?scp=85110645129&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85110645129&partnerID=8YFLogxK
U2 - 10.1007/s00253-021-11436-2
DO - 10.1007/s00253-021-11436-2
M3 - Review article
C2 - 34287658
AN - SCOPUS:85110645129
SN - 0175-7598
VL - 105
SP - 5751
EP - 5767
JO - Applied Microbiology and Biotechnology
JF - Applied Microbiology and Biotechnology
IS - 14-15
ER -