TY - GEN
T1 - Meta-GNN
T2 - 11th IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2019
AU - Sankar, Aravind
AU - Zhang, Xinyang
AU - Chang, Kevin Chen Chuan
N1 - Publisher Copyright:
© 2019 Association for Computing Machinery.
PY - 2019/8/27
Y1 - 2019/8/27
N2 - Heterogeneous Information Networks (HINs) comprise nodes of different types inter-connected through diverse semantic relationships. In many real-world applications, nodes in information networks are often associated with additional attributes, resulting in Attributed HINs (or AHINs). In this paper, we study semi-supervised learning (SSL) on AHINs to classify nodes based on their structure, node types and attributes, given limited supervision. Recently, Graph Convolutional Networks (GCNs) have achieved impressive results in several graph-based SSL tasks. However, they operate on homogeneous networks, while being completely agnostic to the semantics of typed nodes and relationships in real-world HINs. In this paper, we seek to bridge the gap between semantic-rich HINs and the neighborhood aggregation paradigm of graph neural networks, to generalize GCNs through metagraph semantics. We propose a novel metagraph convolution operation to extract features from local metagraph-structured neighborhoods, thus capturing semantic higher-order relationships in AHINs. Our proposed neural architecture Meta-GNN extracts features of diverse semantics by utilizing multiple metagraphs, and employs a novel metagraph-attention module to learn personalized metagraph preferences for each node. Our semi-supervised node classification experiments on multiple real-world AHIN datasets indicate significant performance gains of 6% Micro-F1 on average over state-of-the-art AHIN baselines. Visualizations on metagraph attention weights yield interpretable insights into their relative task-specific importance.
AB - Heterogeneous Information Networks (HINs) comprise nodes of different types inter-connected through diverse semantic relationships. In many real-world applications, nodes in information networks are often associated with additional attributes, resulting in Attributed HINs (or AHINs). In this paper, we study semi-supervised learning (SSL) on AHINs to classify nodes based on their structure, node types and attributes, given limited supervision. Recently, Graph Convolutional Networks (GCNs) have achieved impressive results in several graph-based SSL tasks. However, they operate on homogeneous networks, while being completely agnostic to the semantics of typed nodes and relationships in real-world HINs. In this paper, we seek to bridge the gap between semantic-rich HINs and the neighborhood aggregation paradigm of graph neural networks, to generalize GCNs through metagraph semantics. We propose a novel metagraph convolution operation to extract features from local metagraph-structured neighborhoods, thus capturing semantic higher-order relationships in AHINs. Our proposed neural architecture Meta-GNN extracts features of diverse semantics by utilizing multiple metagraphs, and employs a novel metagraph-attention module to learn personalized metagraph preferences for each node. Our semi-supervised node classification experiments on multiple real-world AHIN datasets indicate significant performance gains of 6% Micro-F1 on average over state-of-the-art AHIN baselines. Visualizations on metagraph attention weights yield interpretable insights into their relative task-specific importance.
UR - http://www.scopus.com/inward/record.url?scp=85078829369&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85078829369&partnerID=8YFLogxK
U2 - 10.1145/3341161.3342859
DO - 10.1145/3341161.3342859
M3 - Conference contribution
AN - SCOPUS:85078829369
T3 - Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2019
SP - 137
EP - 144
BT - Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2019
A2 - Spezzano, Francesca
A2 - Chen, Wei
A2 - Xiao, Xiaokui
PB - Association for Computing Machinery
Y2 - 27 August 2019 through 30 August 2019
ER -