Abstract
A passive transpiration system for controlling interaction between turbulent boundary layer air and an impinging shock during supersonic airflow by application of a panel including passively activated mesoflaps that direct air circulation through a cavity in response to supersonic airflow. The mesoscopic flaps are preferably arranged in a matrix on one side of a cavity. The flaps deflect to allow air to circulate through the cavity during supersonic airflow, thus controlling the interaction between boundary layer air and air from the impinging shockwave. The flaps open to varying degrees depending on the speed of the airflow. The preferred structure includes channel sidewalls arranged parallel to one another and open on one end, creating multiple cavities. The sidewalls are connected by struts. Rows of flap support beams are connected to the sidewalls. The flaps are connected on one end to the beams, enabling them to deflect over their remainder in response to aerodynamic pressures. This structure enables the flaps to open air pathways into the cavity in response to supersonic airflow and to close the cavity to airflow in response to subsonic conditions without a priori knowledge of the precise spanwise and streamwise location of the shockwave.
Original language | English (US) |
---|---|
U.S. patent number | 5971327 |
Filing date | 7/29/98 |
State | Published - Oct 26 1999 |