Mendelian segregation and high recombination rates facilitate genetic analyses in Cryptosporidium parvum

Abigail Kimball, Lisa Funkhouser-Jones, Wanyi Huang, Rui Xu, William H. Witola, L. David Sibley

Research output: Contribution to journalArticlepeer-review

Abstract

Very little is known about the process of meiosis in the apicomplexan parasite Cryptosporidium despite the essentiality of sex in its life cycle. Most cell lines only support asexual growth of Cryptosporidium parvum (C. parvum), but stem cell derived intestinal epithelial cells grown under air-liquid interface (ALI) conditions support the sexual cycle. To examine chromosomal dynamics during meiosis in C. parvum, we generated two transgenic lines of parasites that were fluorescently tagged with mCherry or GFP on chromosomes 1 or 5, respectively. Infection of ALI cultures or Ifngr1-/- mice with mCherry and GFP parasites resulted in cross-fertilization and the formation of “yellow” oocysts, which contain 4 haploid sporozoites that are the product of meiosis. Recombinant oocysts from the F1 generation were purified and used to infect HCT-8 cultures, and phenotypes of the progeny were observed by microscopy. All possible phenotypes predicted by independent segregation were represented equally (~25%) in the population, indicating that C. parvum chromosomes exhibit a Mendelian inheritance pattern. The most common pattern observed from the outgrowth of single oocysts included all possible parental and recombinant phenotypes derived from a single meiotic event, suggesting a high rate of crossover. To estimate the frequency of crossover, additional loci on chromosomes 1 and 5 were tagged and used to monitor intrachromosomal crosses in Ifngr1−/− mice. Both chromosomes showed a high frequency of crossover compared to other apicomplexans with map distances (i.e., 1% recombination) of 3–12 kb. Overall, a high recombination rate may explain many unique characteristics observed in Cryptosporidium spp. such as high rates of speciation, wide variation in host range, and rapid evolution of host-specific virulence factors.

Original languageEnglish (US)
Article numbere1011162
JournalPLoS genetics
Volume20
Issue number6 June
Early online dateJun 17 2024
DOIs
StatePublished - Jun 17 2024

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Molecular Biology
  • Genetics
  • Genetics(clinical)
  • Cancer Research

Fingerprint

Dive into the research topics of 'Mendelian segregation and high recombination rates facilitate genetic analyses in Cryptosporidium parvum'. Together they form a unique fingerprint.

Cite this