TY - JOUR
T1 - Mendelian segregation and high recombination rates facilitate genetic analyses in Cryptosporidium parvum
AU - Kimball, Abigail
AU - Funkhouser-Jones, Lisa
AU - Huang, Wanyi
AU - Xu, Rui
AU - Witola, William H.
AU - Sibley, L. David
N1 - This work was supported by a grant from NIH (AI175150) to LDS and the work was partially supported by the National Science Foundation Graduate Research Fellowship to AKK. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We thank members of the Sibley laboratory for their helpful suggestions.
PY - 2024/6/17
Y1 - 2024/6/17
N2 - Very little is known about the process of meiosis in the apicomplexan parasite Cryptosporidium despite the essentiality of sex in its life cycle. Most cell lines only support asexual growth of Cryptosporidium parvum (C. parvum), but stem cell derived intestinal epithelial cells grown under air-liquid interface (ALI) conditions support the sexual cycle. To examine chromosomal dynamics during meiosis in C. parvum, we generated two transgenic lines of parasites that were fluorescently tagged with mCherry or GFP on chromosomes 1 or 5, respectively. Infection of ALI cultures or Ifngr1-/- mice with mCherry and GFP parasites resulted in cross-fertilization and the formation of “yellow” oocysts, which contain 4 haploid sporozoites that are the product of meiosis. Recombinant oocysts from the F1 generation were purified and used to infect HCT-8 cultures, and phenotypes of the progeny were observed by microscopy. All possible phenotypes predicted by independent segregation were represented equally (~25%) in the population, indicating that C. parvum chromosomes exhibit a Mendelian inheritance pattern. The most common pattern observed from the outgrowth of single oocysts included all possible parental and recombinant phenotypes derived from a single meiotic event, suggesting a high rate of crossover. To estimate the frequency of crossover, additional loci on chromosomes 1 and 5 were tagged and used to monitor intrachromosomal crosses in Ifngr1−/− mice. Both chromosomes showed a high frequency of crossover compared to other apicomplexans with map distances (i.e., 1% recombination) of 3–12 kb. Overall, a high recombination rate may explain many unique characteristics observed in Cryptosporidium spp. such as high rates of speciation, wide variation in host range, and rapid evolution of host-specific virulence factors.
AB - Very little is known about the process of meiosis in the apicomplexan parasite Cryptosporidium despite the essentiality of sex in its life cycle. Most cell lines only support asexual growth of Cryptosporidium parvum (C. parvum), but stem cell derived intestinal epithelial cells grown under air-liquid interface (ALI) conditions support the sexual cycle. To examine chromosomal dynamics during meiosis in C. parvum, we generated two transgenic lines of parasites that were fluorescently tagged with mCherry or GFP on chromosomes 1 or 5, respectively. Infection of ALI cultures or Ifngr1-/- mice with mCherry and GFP parasites resulted in cross-fertilization and the formation of “yellow” oocysts, which contain 4 haploid sporozoites that are the product of meiosis. Recombinant oocysts from the F1 generation were purified and used to infect HCT-8 cultures, and phenotypes of the progeny were observed by microscopy. All possible phenotypes predicted by independent segregation were represented equally (~25%) in the population, indicating that C. parvum chromosomes exhibit a Mendelian inheritance pattern. The most common pattern observed from the outgrowth of single oocysts included all possible parental and recombinant phenotypes derived from a single meiotic event, suggesting a high rate of crossover. To estimate the frequency of crossover, additional loci on chromosomes 1 and 5 were tagged and used to monitor intrachromosomal crosses in Ifngr1−/− mice. Both chromosomes showed a high frequency of crossover compared to other apicomplexans with map distances (i.e., 1% recombination) of 3–12 kb. Overall, a high recombination rate may explain many unique characteristics observed in Cryptosporidium spp. such as high rates of speciation, wide variation in host range, and rapid evolution of host-specific virulence factors.
UR - http://www.scopus.com/inward/record.url?scp=85196151561&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85196151561&partnerID=8YFLogxK
U2 - 10.1371/journal.pgen.1011162
DO - 10.1371/journal.pgen.1011162
M3 - Article
C2 - 38885280
AN - SCOPUS:85196151561
SN - 1553-7390
VL - 20
JO - PLoS genetics
JF - PLoS genetics
IS - 6 June
M1 - e1011162
ER -