Membrane separation of solids from corn processing streams

Tricia L. Templin, David B. Johnston, Vijay Singh, M. E. Tumbleson, Ronald L. Belyea, Kent D. Rausch

Research output: Contribution to journalArticlepeer-review


Corn processing streams are characterized by high water content. Removal of water and recovery of solids are major economic and logistical challenges. New technologies are needed to modify processing streams and to reduce variability and improve quality of coproducts. The objective was to determine the effectiveness of microfiltration and ultrafiltration systems in altering water, solids (protein) and ash contents of corn processing streams. Corn was either steeped with SO2 (STW) or soaked (SKW) in water; STW contained more solids than SKW. Ultrafiltration of STW and SKW had little effect on water removal or solids recovery. Corn was processed by a conventional wet milling process and a wet milling process that used enzymes to eliminate use of SO2 steeping. Protein streams from the conventional process (CG) and the enzymatic process (EG) were processed by microfiltration. Permeate streams from EG and CG had higher total solids and ash concentrations than retentate streams; much of the ash was recovered in permeate (67% and 83%, respectively). For CG, proteins were largely recovered in retentate, whereas for EG, proteins were recovered in permeate. SDS-PAGE data indicated a decrease in size of proteins in the EG process stream. Permeate streams from microfiltration were subject to ultrafiltration; there was little effect on solids and nutrient separations.

Original languageEnglish (US)
Pages (from-to)1536-1545
Number of pages10
JournalBioresource Technology
Issue number13
StatePublished - Sep 2006


  • Coproducts
  • Enzymes
  • Gluten
  • Membrane filtration
  • Processing
  • Steepwater
  • Wet milling

ASJC Scopus subject areas

  • Bioengineering
  • Environmental Engineering
  • Renewable Energy, Sustainability and the Environment
  • Waste Management and Disposal


Dive into the research topics of 'Membrane separation of solids from corn processing streams'. Together they form a unique fingerprint.

Cite this