MediTab: Scaling Medical Tabular Data Predictors via Data Consolidation, Enrichment, and Refinement

Zifeng Wang, Chufan Gao, Cao Xiao, Jimeng Sun

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Tabular data prediction has been employed in medical applications such as patient health risk prediction. However, existing methods usually revolve around the algorithm design while overlooking the significance of data engineering. Medical tabular datasets frequently exhibit significant heterogeneity across different sources, with limited sample sizes per source. As such, previous predictors are often trained on manually curated small datasets that struggle to generalize across different tabular datasets during inference. This paper proposes to scale medical tabular data predictors (MediTab) to various tabular inputs with varying features. The method uses a data engine that leverages large language models (LLMs) to consolidate tabular samples to overcome the barrier across tables with distinct schema. It also aligns out-domain data with the target task using a “learn, annotate, and refinement” pipeline. The expanded training data then enables the pre-trained MediTab to infer for arbitrary tabular input in the domain without finetuning, resulting in significant improvements over supervised baselines: it reaches an average ranking of 1.57 and 1.00 on 7 patient outcome prediction datasets and 3 trial outcome prediction datasets, respectively. In addition, MediTab exhibits impressive zero-shot performances: it outperforms supervised XGBoost models by 8.9% and 17.2% on average in two prediction tasks, respectively.

Original languageEnglish (US)
Title of host publicationProceedings of the 33rd International Joint Conference on Artificial Intelligence, IJCAI 2024
EditorsKate Larson
PublisherInternational Joint Conferences on Artificial Intelligence
Pages6062-6070
Number of pages9
ISBN (Electronic)9781956792041
StatePublished - 2024
Event33rd International Joint Conference on Artificial Intelligence, IJCAI 2024 - Jeju, Korea, Republic of
Duration: Aug 3 2024Aug 9 2024

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
ISSN (Print)1045-0823

Conference

Conference33rd International Joint Conference on Artificial Intelligence, IJCAI 2024
Country/TerritoryKorea, Republic of
CityJeju
Period8/3/248/9/24

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'MediTab: Scaling Medical Tabular Data Predictors via Data Consolidation, Enrichment, and Refinement'. Together they form a unique fingerprint.

Cite this