TY - GEN
T1 - Medical image reconstruction with image-adaptive priors learned by use of generative adversarial networks
AU - Bhadra, Sayantan
AU - Zhou, Weimin
AU - Anastasio, Mark A.
N1 - Publisher Copyright:
© 2020 SPIE
PY - 2020
Y1 - 2020
N2 - Medical image reconstruction is often an ill-posed inverse problem. In order to address such ill-posed inverse problems, prior knowledge of the sought after object property is usually incorporated by means of regularization. For example, sparsity-promoting regularization in a suitable transform domain is widely used to reconstruct images with diagnostic quality from noisy and/or incomplete medical data. However, sparsity-promoting regularization may not be able to comprehensively describe the actual prior information of the objects being imaged. Deep generative models, such as generative adversarial networks (GANs) have shown great promise in learning the underlying distribution of images. Prior distributions for images estimated using GANs have been employed as a means of regularization with impressive results in several linear inverse problems in computer vision that are also relevant to medical imaging. However, in practice, it can be difficult for a GAN to comprehensively describe prior distributions, which can potentially lead to a lack of fidelity between the reconstructed image and the observed data. Recently, an image-adaptive GAN-based reconstruction method (IAGAN) was proposed to guarantee stronger data consistency by adapting the trained generative model parameters to the observed measurements. In this work, for the first time, we apply the IAGAN method to reconstruct images from undersampled magnetic resonance imaging (MRI) measurements. A state-of-the-art GAN model called Progressive Growing of GANs (ProGAN) was trained on a large number of ground truth images from the NYU fastMRI dataset, and the learned generator was subsequently employed in the IAGAN framework to reconstruct high fidelity images from retrospectively undersampled experimental k-space data in the validation dataset. It is demonstrated that by use of the GAN-based reconstruction method with noisy and/or incomplete measurements, we can potentially recover fine structures in the object that are relevant for medical diagnosis that may be difficult to achieve using traditional reconstruction methods relying on sparsity-promoting penalties.
AB - Medical image reconstruction is often an ill-posed inverse problem. In order to address such ill-posed inverse problems, prior knowledge of the sought after object property is usually incorporated by means of regularization. For example, sparsity-promoting regularization in a suitable transform domain is widely used to reconstruct images with diagnostic quality from noisy and/or incomplete medical data. However, sparsity-promoting regularization may not be able to comprehensively describe the actual prior information of the objects being imaged. Deep generative models, such as generative adversarial networks (GANs) have shown great promise in learning the underlying distribution of images. Prior distributions for images estimated using GANs have been employed as a means of regularization with impressive results in several linear inverse problems in computer vision that are also relevant to medical imaging. However, in practice, it can be difficult for a GAN to comprehensively describe prior distributions, which can potentially lead to a lack of fidelity between the reconstructed image and the observed data. Recently, an image-adaptive GAN-based reconstruction method (IAGAN) was proposed to guarantee stronger data consistency by adapting the trained generative model parameters to the observed measurements. In this work, for the first time, we apply the IAGAN method to reconstruct images from undersampled magnetic resonance imaging (MRI) measurements. A state-of-the-art GAN model called Progressive Growing of GANs (ProGAN) was trained on a large number of ground truth images from the NYU fastMRI dataset, and the learned generator was subsequently employed in the IAGAN framework to reconstruct high fidelity images from retrospectively undersampled experimental k-space data in the validation dataset. It is demonstrated that by use of the GAN-based reconstruction method with noisy and/or incomplete measurements, we can potentially recover fine structures in the object that are relevant for medical diagnosis that may be difficult to achieve using traditional reconstruction methods relying on sparsity-promoting penalties.
KW - Compressed sensing
KW - Deep learning
KW - Generative adversarial networks
KW - Inverse problems
KW - Magnetic resonance imaging
KW - Medical image reconstruction
KW - Regularization
UR - http://www.scopus.com/inward/record.url?scp=85086720699&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85086720699&partnerID=8YFLogxK
U2 - 10.1117/12.2549750
DO - 10.1117/12.2549750
M3 - Conference contribution
AN - SCOPUS:85086720699
T3 - Progress in Biomedical Optics and Imaging - Proceedings of SPIE
BT - Medical Imaging 2020
A2 - Chen, Guang-Hong
A2 - Bosmans, Hilde
PB - SPIE
T2 - Medical Imaging 2020: Physics of Medical Imaging
Y2 - 16 February 2020 through 19 February 2020
ER -