Mechanistic origin of partial agonism of tetrahydrocannabinol for cannabinoid receptors

Soumajit Dutta, Balaji Selvam, Aditi Das, Diwakar Shukla

Research output: Contribution to journalArticlepeer-review

Abstract

Cannabinoid receptor 1 (CB1) is a therapeutically relevant drug target for controlling pain, obesity, and other central nervous system disorders. However, full agonists and antagonists of CB1 have been reported to cause serious side effects in patients. Therefore, partial agonists have emerged as a viable alternative as they can mitigate overstimulation and side effects. One of the key bottlenecks in the design of partial agonists, however, is the lack of understanding of the molecular mechanism of partial agonism itself. In this study, we examine two mechanistic hypotheses for the origin of partial agonism in cannabinoid receptors and predict the mechanistic basis of partial agonism exhibited by δ9-Tetrahydrocannabinol (THC) against CB1. In particular, we inspect whether partial agonism emerges from the ability of THC to bind in both agonist and antagonist-binding poses or from its ability to only partially activate the receptor. We used extensive molecular dynamics simulations and Markov state modeling to capture the THC binding in both antagonist and agonist-binding poses in the CB1 receptor. Furthermore, we predict that binding of THC in the agonist-binding pose leads to rotation of toggle switch residues and causes partial outward movement of intracellular transmembrane helix 6 (TM6). Our simulations also suggest that the alkyl side chain of THC plays a crucial role in determining partial agonism by stabilizing the ligand in the agonist and antagonist-like poses within the pocket. Taken together, this study provides important insights into the mechanistic origin of the partial agonism of THC.

Original languageEnglish (US)
Article number101764
JournalJournal of Biological Chemistry
Volume298
Issue number4
DOIs
StatePublished - Apr 1 2022

ASJC Scopus subject areas

  • Molecular Biology
  • Biochemistry
  • Cell Biology

Fingerprint

Dive into the research topics of 'Mechanistic origin of partial agonism of tetrahydrocannabinol for cannabinoid receptors'. Together they form a unique fingerprint.

Cite this