Mechanistic approach to the prediction of material removal rates in rotary ultrasonic machining

Z. J. Pei, D. Prabhakar, P. M. Ferreira, M. Haselkorn

Research output: Contribution to journalArticlepeer-review


An approach to modeling the material removal rate (MRR) during rotary ultrasonic machining (RUM) of ceramics is proposed and applied to predicting the MRR for the case of magnesia stabilized zirconia. The model, a first attempt at predicting the MRR in RUM, is based on the assumption that brittle fracture is the primary mechanism of material removal. To justify this assumption, a model parameter (which models the ratio of the fractured volume to the indented volume of a single diamond particle) is shown to be invariant for most machining conditions. The model is mechanistic in the sense that this parameter can be observed experimentally from a few experiments for a particular material and then used in prediction of MRR over a wide range of process parameters. This is demonstrated for magnesia stabilized zirconia, where very good predictions are obtained using an estimate of this single parameter. On the basis of this model, relations between the material removal rate and the controllable machining parameters are deduced. These relationships agree well with the trends observed by experimental observations made by other investigators.

Original languageEnglish (US)
Pages (from-to)142-151
Number of pages10
JournalJournal of engineering for industry
Issue number2
StatePublished - 1995

ASJC Scopus subject areas

  • General Engineering


Dive into the research topics of 'Mechanistic approach to the prediction of material removal rates in rotary ultrasonic machining'. Together they form a unique fingerprint.

Cite this