Mechanical characterization of a hybrid carbon nanotube/ carbon fiber reinforced composite

Mehran Tehrani, Ayoub Y. Boroujeni, Ramez Hajj, Marwan Al-Haik

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Carbon fiber reinforced polymer composites (CFRPs) are renowned for their superior in-plane mechanical properties. However, they lack sufficient out-of-plane performance. Integrating carbon nanotubes (CNTs) into structures of CFRPs can enhance their poor out-of-plane properties. The present work investigates the effect of adding CNTs, grown on carbon fibers via a relatively low temperature growth technique, on the on and off-axis tensile properties as well as on transverse high velocity impact (∼100 m.s-1) energy absorption of the corresponding CFRPs. Two sets of composite samples based on carbon fabrics with surface grown CNTs and reference fabrics were fabricated and mechanically characterized via tension and impact tests. The on-axis and off-axis tests confirmed improvements in the strength and stiffness of the hybrid samples over the reference ones. A gas gun equipped with a high-speed camera was utilized to evaluate the impact energy absorption of the composite systems subjected to transverse spherical projectiles. Due to the integration of CNTs, intermediate improvements in the tensile properties of the CFRP were achieved. However, the CFRPs' impact energy absorption was improved significantly.

Original languageEnglish (US)
Title of host publicationMechanics of Solids, Structures and Fluids
PublisherAmerican Society of Mechanical Engineers(ASME)
ISBN (Print)9780791856383
DOIs
StatePublished - 2013
Externally publishedYes
EventASME 2013 International Mechanical Engineering Congress and Exposition, IMECE 2013 - San Diego, CA, United States
Duration: Nov 15 2013Nov 21 2013

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume9

Other

OtherASME 2013 International Mechanical Engineering Congress and Exposition, IMECE 2013
Country/TerritoryUnited States
CitySan Diego, CA
Period11/15/1311/21/13

ASJC Scopus subject areas

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Mechanical characterization of a hybrid carbon nanotube/ carbon fiber reinforced composite'. Together they form a unique fingerprint.

Cite this