TY - GEN
T1 - Measuring the Effect of Influential Messages on Varying Personas
AU - Sun, Chenkai
AU - Li, Jinning
AU - Chan, Hou Pong
AU - Zhai, Cheng Xiang
AU - Ji, Heng
N1 - This research is based upon work supported in part by U.S. DARPA INCAS Program No. HR001121C0165. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of DARPA, or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright annotation therein. Hou Pong Chan was supported in part by the Science and Technology Development Fund, Macau SAR (Grant Nos. FDCT/060/2022/AFJ, FDCT/0070/2022/AMJ) and the Multi-year Research Grant from the University of Macau (Grant No. MYRG2020-00054-FST).
PY - 2023
Y1 - 2023
N2 - Predicting how a user responds to news events enables important applications such as allowing intelligent agents or content producers to estimate the effect on different communities and revise unreleased messages to prevent unexpected bad outcomes such as social conflict and moral injury. We present a new task, Response Forecasting on Personas for News Media, to estimate the response a persona (characterizing an individual or a group) might have upon seeing a news message. Compared to the previous efforts which only predict generic comments to news, the proposed task not only introduces personalization in the modeling but also predicts the sentiment polarity and intensity of each response. This enables more accurate and comprehensive inference on the mental state of the persona. Meanwhile, the generated sentiment dimensions make the evaluation and application more reliable. We create the first benchmark dataset, which consists of 13,357 responses to 3,847 news headlines from Twitter. We further evaluate the SOTA neural language models with our dataset. The empirical results suggest that the included persona attributes are helpful for the performance of all response dimensions. Our analysis shows that the best-performing models are capable of predicting responses that are consistent with the personas, and as a byproduct, the task formulation also enables many interesting applications in the analysis of social network groups and their opinions, such as the discovery of extreme opinion groups.
AB - Predicting how a user responds to news events enables important applications such as allowing intelligent agents or content producers to estimate the effect on different communities and revise unreleased messages to prevent unexpected bad outcomes such as social conflict and moral injury. We present a new task, Response Forecasting on Personas for News Media, to estimate the response a persona (characterizing an individual or a group) might have upon seeing a news message. Compared to the previous efforts which only predict generic comments to news, the proposed task not only introduces personalization in the modeling but also predicts the sentiment polarity and intensity of each response. This enables more accurate and comprehensive inference on the mental state of the persona. Meanwhile, the generated sentiment dimensions make the evaluation and application more reliable. We create the first benchmark dataset, which consists of 13,357 responses to 3,847 news headlines from Twitter. We further evaluate the SOTA neural language models with our dataset. The empirical results suggest that the included persona attributes are helpful for the performance of all response dimensions. Our analysis shows that the best-performing models are capable of predicting responses that are consistent with the personas, and as a byproduct, the task formulation also enables many interesting applications in the analysis of social network groups and their opinions, such as the discovery of extreme opinion groups.
UR - http://www.scopus.com/inward/record.url?scp=85172225532&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85172225532&partnerID=8YFLogxK
U2 - 10.18653/v1/2023.acl-short.48
DO - 10.18653/v1/2023.acl-short.48
M3 - Conference contribution
AN - SCOPUS:85172225532
T3 - Proceedings of the Annual Meeting of the Association for Computational Linguistics
SP - 554
EP - 562
BT - Short Papers
PB - Association for Computational Linguistics (ACL)
T2 - 61st Annual Meeting of the Association for Computational Linguistics, ACL 2023
Y2 - 9 July 2023 through 14 July 2023
ER -