Abstract
Measurements of jet cross-section ratios between inclusive bins of jet multiplicity are performed in Formula Presented of proton-proton collisions with Formula Presented center-of-mass energy, recorded with the ATLAS detector at CERN’s Large Hadron Collider. These ratios are constructed from double-differential cross-section measurements that are made in bins of jet multiplicity and other observables that are sensitive the energy scale and angular distribution of radiation due to the strong interaction in the final state. Additionally, the scalar sum of the two leading jets’ transverse momenta is measured triple differentially, in bins of the third jet’s transverse momentum and of jet multiplicity. These measurements are unfolded to account for acceptance and detector-related effects. The measured distributions are used to construct ratios of the inclusive jet-multiplicity bins, which have been shown to be sensitive to the strong coupling Formula Presented while being less sensitive than other observables to systematic uncertainties and parton distribution functions. The measured distributions are compared with state-of-the-art QCD calculations, including next-to-next-to-leading-order predictions for two- and three-jet events. These predictions are generally found to model the data well and perform best in bins with a modest requirement on the third jet’s transverse momentum. Significant differences between data and Monte Carlo predictions are observed in events with large rapidity gaps and invariant masses of the leading jet pair. Studies leading to reduced jet energy scale uncertainties significantly improve the precision of this work and are documented herein.
Original language | English (US) |
---|---|
Article number | 072019 |
Journal | Physical Review D |
Volume | 110 |
Issue number | 7 |
DOIs | |
State | Published - Oct 1 2024 |
ASJC Scopus subject areas
- Nuclear and High Energy Physics
Online availability
- 10.1103/PhysRevD.110.072019License: CC BY
Library availability
Discover UIUC Full TextRelated links
Fingerprint
Dive into the research topics of 'Measurements of jet cross-section ratios in 13 TeV proton-proton collisions with ATLAS'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
In: Physical Review D, Vol. 110, No. 7, 072019, 01.10.2024.
Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Measurements of jet cross-section ratios in 13 TeV proton-proton collisions with ATLAS
AU - Atlas Collaboration
AU - Filmer, E. K.
AU - Grant, C. M.
AU - Jackson, P.
AU - Kong, A. X.Y.
AU - Pandya, H. D.
AU - Potti, H.
AU - Ruggeri, T. A.
AU - Saha, S.
AU - Ting, E. X.L.
AU - White, M. J.
AU - Gingrich, D. M.
AU - Lindon, J. H.
AU - Nishu, N.
AU - Pinfold, J. L.
AU - Cakir, O.
AU - Canbay, A. C.
AU - Yildiz, H. Duran
AU - Kuday, S.
AU - Turk Cakir, I.
AU - Sultansoy, S.
AU - Adam Bourdarios, C.
AU - Arnaez, O.
AU - Berger, N.
AU - Brahimi, N.
AU - Castillo, F. L.
AU - Cavaliere, T.
AU - Costanza, F.
AU - Delmastro, M.
AU - Di Ciaccio, L.
AU - Hryn’ova, T.
AU - Koletsou, I.
AU - Levêque, J.
AU - Lewis, D. J.
AU - Little, J. D.
AU - Lorenzo Martinez, N.
AU - Sauvan, E.
AU - Wu, Z.
AU - Bernardi, G.
AU - Bomben, M.
AU - Li, A.
AU - Li, T.
AU - Marchiori, G.
AU - Nakkalil, K.
AU - Shen, Q.
AU - Zhang, Y.
AU - Chekanov, S.
AU - Hopkins, W. H.
AU - Alexa, C.
AU - Hooberman, B. H.
AU - Sickles, A. M.
N1 - We thank CERN for the very successful operation of the LHC and its injectors, as well as the support staff at CERN and at our institutions worldwide without whom ATLAS could not be operated efficiently. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF/SFU (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), RAL (UK), and BNL (USA), the Tier-2 facilities worldwide, and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. . We gratefully acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; ANID, Chile; CAS, MOST, and NSFC, China; Minciencias, Colombia; MEYS CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRI, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW, Poland; FCT, Portugal; MNE/IFA, Romania; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZ\u0160, Slovenia; DSI/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF, and Cantons of Bern and Geneva, Switzerland; MOST, Taipei; TENMAK, T\u00FCrkiye; STFC, United Kingdom; DOE and NSF, U.S. Individual groups and members have received support from BCKDF, CANARIE, CRC, and DRAC, Canada; CERN-CZ, PRIMUS 21/SCI/017, and UNCE SCI/013, Czech Republic; COST, ERC, ERDF, Horizon 2020, ICSC-NextGenerationEU, and Marie Sk\u0142odowska-Curie Actions, European Union; Investissements d\u2019Avenir Labex, Investissements d\u2019Avenir Idex, and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales, and Aristeia programs cofinanced by EU-ESF and the Greek NSRF, Greece; BSF-NSF and MINERVA, Israel; Norwegian Financial Mechanism 2014-2021, Norway; NCN and NAWA, Poland; La Caixa Banking Foundation, CERCA Programme Generalitat de Catalunya, and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; G\u00F6ran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom. In addition, individual members wish to acknowledge support from CERN: European Organization for Nuclear Research (CERN PJAS); Chile: Agencia Nacional de Investigaci\u00F3n y Desarrollo (FONDECYT 1190886, FONDECYT 1210400, FONDECYT 1230812, FONDECYT 1230987); China: National Natural Science Foundation of China (NSFC\u201412175119, NSFC 12275265, NSFC-12075060); Czech Republic: PRIMUS Research Programme (PRIMUS/21/SCI/017); European Union: European Research Council (ERC\u2014948254, ERC 101089007), Horizon 2020 Framework Programme (MUCCA\u2014CHIST-ERA-19-XAI-00), European Union, Future Artificial Intelligence Research (FAIR-NextGenerationEU PE00000013), Italian Center for High Performance Computing, Big Data and Quantum Computing (ICSC, NextGenerationEU); France: Agence Nationale de la Recherche (ANR-20-CE31-0013, ANR-21-CE31-0013, ANR-21-CE31-0022), Investissements d\u2019Avenir Labex (ANR-11-LABX-0012); Germany: Baden-W\u00FCrttemberg Stiftung (BW Stiftung-Postdoc Eliteprogramme), Deutsche Forschungsgemeinschaft (DFG\u2014469666862, DFG\u2014CR 312/5-2); Italy: Istituto Nazionale di Fisica Nucleare (ICSC, NextGenerationEU); Japan: Japan Society for the Promotion of Science (JSPS KAKENHI JP21H05085, JSPS KAKENHI JP22H01227, JSPS KAKENHI JP22H04944, JSPS KAKENHI JP22KK0227); Netherlands: Netherlands Organisation for Scientific Research (NWO Veni 2020\u2014VI.Veni.202.179); Norway: Research Council of Norway (RCN-314472); Poland: Polish National Agency for Academic Exchange (PPN/PPO/2020/1/00002/U/00001), Polish National Science Centre (NCN 2021/42/E/ST2/00350, NCN OPUS nr 2022/47/B/ST2/03059, NCN UMO-2019/34/E/ST2/00393, UMO-2020/37/B/ST2/01043, UMO-2021/40/C/ST2/00187, UMO-2022/47/O/ST2/00148); Slovenia: Slovenian Research Agency (ARIS Grant No. J1-3010); Spain: BBVA Foundation (LEO22-1-603), Generalitat Valenciana (Artemisa, FEDER, IDIFEDER/2018/048), Ministry of Science and Innovation (MCIN & NextGenEU PCI2022-135018-2, MICIN & FEDER PID2021-125273NB, RYC2019-028510-I, RYC2020-030254-I, RYC2021-031273-I, RYC2022-038164-I), PROMETEO, and GenT Programmes Generalitat Valenciana (CIDEGENT/2019/023, CIDEGENT/2019/027); Sweden: Swedish Research Council (VR 2018-00482, VR 2022-03845, VR 2022-04683, VR Grant No. 2021-03651), Knut and Alice Wallenberg Foundation (KAW 2017.0100, KAW 2018.0157, KAW 2018.0458, KAW 2019.0447, KAW 2022.0358); Switzerland: Swiss National Science Foundation (SNSF\u2014PCEFP2_194658); United Kingdom: Leverhulme Trust (Leverhulme Trust RPG-2020-004), Royal Society (NIF-R1-231091); U.S.: U.S. Department of Energy (ECA DE-AC02-76SF00515), Neubauer Family Foundation. We thank CERN for the very successful operation of the LHC and its injectors, as well as the support staff at CERN and at our institutions worldwide without whom ATLAS could not be operated efficiently. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF/SFU (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), RAL (UK), and BNL (USA), the Tier-2 facilities worldwide, and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [141]. We gratefully acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; ANID, Chile; CAS, MOST, and NSFC, China; Minciencias, Colombia; MEYS CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRI, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW, Poland; FCT, Portugal; MNE/IFA, Romania; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZ\u0160, Slovenia; DSI/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF, and Cantons of Bern and Geneva, Switzerland; MOST, Taipei; TENMAK, T\u00FCrkiye; STFC, United Kingdom; DOE and NSF, U.S. Individual groups and members have received support from BCKDF, CANARIE, CRC, and DRAC, Canada; CERN-CZ, PRIMUS 21/SCI/017, and UNCE SCI/013, Czech Republic; COST, ERC, ERDF, Horizon 2020, ICSC-NextGenerationEU, and Marie Sk\u0142odowska-Curie Actions, European Union; Investissements d\u2019Avenir Labex, Investissements d\u2019Avenir Idex, and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales, and Aristeia programs cofinanced by EU-ESF and the Greek NSRF, Greece; BSF-NSF and MINERVA, Israel; Norwegian Financial Mechanism 2014-2021, Norway; NCN and NAWA, Poland; La Caixa Banking Foundation, CERCA Programme Generalitat de Catalunya, and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; G\u00F6ran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom. In addition, individual members wish to acknowledge support from CERN: European Organization for Nuclear Research (CERN PJAS); Chile: Agencia Nacional de Investigaci\u00F3n y Desarrollo (FONDECYT 1190886, FONDECYT 1210400, FONDECYT 1230812, FONDECYT 1230987); China: National Natural Science Foundation of China (NSFC\u201412175119, NSFC 12275265, NSFC-12075060); Czech Republic: PRIMUS Research Programme (PRIMUS/21/SCI/017); European Union: European Research Council (ERC\u2014948254, ERC 101089007), Horizon 2020 Framework Programme (MUCCA\u2014CHIST-ERA-19-XAI-00), European Union, Future Artificial Intelligence Research (FAIR-NextGenerationEU PE00000013), Italian Center for High Performance Computing, Big Data and Quantum Computing (ICSC, NextGenerationEU); France: Agence Nationale de la Recherche (ANR-20-CE31-0013, ANR-21-CE31-0013, ANR-21-CE31-0022), Investissements d\u2019Avenir Labex (ANR-11-LABX-0012); Germany: Baden-W\u00FCrttemberg Stiftung (BW Stiftung-Postdoc Eliteprogramme), Deutsche Forschungsgemeinschaft (DFG\u2014469666862, DFG\u2014CR 312/5-2); Italy: Istituto Nazionale di Fisica Nucleare (ICSC, NextGenerationEU); Japan: Japan Society for the Promotion of Science (JSPS KAKENHI JP21H05085, JSPS KAKENHI JP22H01227, JSPS KAKENHI JP22H04944, JSPS KAKENHI JP22KK0227); Netherlands: Netherlands Organisation for Scientific Research (NWO Veni 2020\u2014VI.Veni.202.179); Norway: Research Council of Norway (RCN-314472); Poland: Polish National Agency for Academic Exchange (PPN/PPO/2020/1/00002/U/00001), Polish National Science Centre (NCN 2021/42/E/ST2/00350, NCN OPUS nr 2022/47/B/ST2/03059, NCN UMO-2019/34/E/ST2/00393, UMO-2020/37/B/ST2/01043, UMO-2021/40/C/ST2/00187, UMO-2022/47/O/ST2/00148); Slovenia: Slovenian Research Agency (ARIS Grant No. J1-3010); Spain: BBVA Foundation (LEO22-1-603), Generalitat Valenciana (Artemisa, FEDER, IDIFEDER/2018/048), Ministry of Science and Innovation (MCIN & NextGenEU PCI2022-135018-2, MICIN & FEDER PID2021-125273NB, RYC2019-028510-I, RYC2020-030254-I, RYC2021-031273-I, RYC2022-038164-I), PROMETEO, and GenT Programmes Generalitat Valenciana (CIDEGENT/2019/023, CIDEGENT/2019/027); Sweden: Swedish Research Council (VR 2018-00482, VR 2022-03845, VR 2022-04683, VR Grant No. 2021-03651), Knut and Alice Wallenberg Foundation (KAW 2017.0100, KAW 2018.0157, KAW 2018.0458, KAW 2019.0447, KAW 2022.0358); Switzerland: Swiss National Science Foundation (SNSF\u2014PCEFP2_194658); United Kingdom: Leverhulme Trust (Leverhulme Trust RPG-2020-004), Royal Society (NIF-R1-231091); U.S.: U.S. Department of Energy (ECA DE-AC02-76SF00515), Neubauer Family Foundation.
PY - 2024/10/1
Y1 - 2024/10/1
N2 - Measurements of jet cross-section ratios between inclusive bins of jet multiplicity are performed in Formula Presented of proton-proton collisions with Formula Presented center-of-mass energy, recorded with the ATLAS detector at CERN’s Large Hadron Collider. These ratios are constructed from double-differential cross-section measurements that are made in bins of jet multiplicity and other observables that are sensitive the energy scale and angular distribution of radiation due to the strong interaction in the final state. Additionally, the scalar sum of the two leading jets’ transverse momenta is measured triple differentially, in bins of the third jet’s transverse momentum and of jet multiplicity. These measurements are unfolded to account for acceptance and detector-related effects. The measured distributions are used to construct ratios of the inclusive jet-multiplicity bins, which have been shown to be sensitive to the strong coupling Formula Presented while being less sensitive than other observables to systematic uncertainties and parton distribution functions. The measured distributions are compared with state-of-the-art QCD calculations, including next-to-next-to-leading-order predictions for two- and three-jet events. These predictions are generally found to model the data well and perform best in bins with a modest requirement on the third jet’s transverse momentum. Significant differences between data and Monte Carlo predictions are observed in events with large rapidity gaps and invariant masses of the leading jet pair. Studies leading to reduced jet energy scale uncertainties significantly improve the precision of this work and are documented herein.
AB - Measurements of jet cross-section ratios between inclusive bins of jet multiplicity are performed in Formula Presented of proton-proton collisions with Formula Presented center-of-mass energy, recorded with the ATLAS detector at CERN’s Large Hadron Collider. These ratios are constructed from double-differential cross-section measurements that are made in bins of jet multiplicity and other observables that are sensitive the energy scale and angular distribution of radiation due to the strong interaction in the final state. Additionally, the scalar sum of the two leading jets’ transverse momenta is measured triple differentially, in bins of the third jet’s transverse momentum and of jet multiplicity. These measurements are unfolded to account for acceptance and detector-related effects. The measured distributions are used to construct ratios of the inclusive jet-multiplicity bins, which have been shown to be sensitive to the strong coupling Formula Presented while being less sensitive than other observables to systematic uncertainties and parton distribution functions. The measured distributions are compared with state-of-the-art QCD calculations, including next-to-next-to-leading-order predictions for two- and three-jet events. These predictions are generally found to model the data well and perform best in bins with a modest requirement on the third jet’s transverse momentum. Significant differences between data and Monte Carlo predictions are observed in events with large rapidity gaps and invariant masses of the leading jet pair. Studies leading to reduced jet energy scale uncertainties significantly improve the precision of this work and are documented herein.
UR - http://www.scopus.com/inward/record.url?scp=85209908175&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85209908175&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.110.072019
DO - 10.1103/PhysRevD.110.072019
M3 - Article
AN - SCOPUS:85209908175
SN - 2470-0010
VL - 110
JO - Physical Review D
JF - Physical Review D
IS - 7
M1 - 072019
ER -