TY - GEN
T1 - Mean-field-analysis of coding versus replication in cloud storage systems
AU - Li, Bin
AU - Ramamoorthy, Aditya
AU - Srikant, R.
N1 - Publisher Copyright:
© 2016 IEEE.
PY - 2016/7/27
Y1 - 2016/7/27
N2 - We study cloud-storage systems with a very large number of files stored in a very large number of servers. In such systems, files are either replicated or coded to ensure reliability, i.e., file recovery from server failures. This redundancy in storage can further be exploited to improve system performance (mean file access delay) through appropriate load-balancing (routing) schemes. However, it is unclear whether coding or replication is better from a system performance perspective since the corresponding queueing analysis of such systems is, in general, quite difficult except for the trivial case when the system load asymptotically tends to zero. Here, we study the more difficult case where the system load is not asymptotically zero. Using the fact that the system size is large, we obtain a mean-field limit for the steady-state distribution of the number of file access requests waiting at each server. We then use the mean-field limit to show that, for a given storage capacity per file, coding strictly outperforms replication at all traffic loads while improving reliability. Further, the factor by which the performance improves in the heavy-traffic is at least as large as in the light-traffic case. Finally, we validate these results through extensive simulations.
AB - We study cloud-storage systems with a very large number of files stored in a very large number of servers. In such systems, files are either replicated or coded to ensure reliability, i.e., file recovery from server failures. This redundancy in storage can further be exploited to improve system performance (mean file access delay) through appropriate load-balancing (routing) schemes. However, it is unclear whether coding or replication is better from a system performance perspective since the corresponding queueing analysis of such systems is, in general, quite difficult except for the trivial case when the system load asymptotically tends to zero. Here, we study the more difficult case where the system load is not asymptotically zero. Using the fact that the system size is large, we obtain a mean-field limit for the steady-state distribution of the number of file access requests waiting at each server. We then use the mean-field limit to show that, for a given storage capacity per file, coding strictly outperforms replication at all traffic loads while improving reliability. Further, the factor by which the performance improves in the heavy-traffic is at least as large as in the light-traffic case. Finally, we validate these results through extensive simulations.
UR - http://www.scopus.com/inward/record.url?scp=84983354263&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84983354263&partnerID=8YFLogxK
U2 - 10.1109/INFOCOM.2016.7524626
DO - 10.1109/INFOCOM.2016.7524626
M3 - Conference contribution
AN - SCOPUS:84983354263
T3 - Proceedings - IEEE INFOCOM
BT - IEEE INFOCOM 2016 - 35th Annual IEEE International Conference on Computer Communications
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 35th Annual IEEE International Conference on Computer Communications, IEEE INFOCOM 2016
Y2 - 10 April 2016 through 14 April 2016
ER -