MD-Vibe: Physics-informed analysis of patient-induced structural vibration data for monitoring gait health in individuals with muscular dystrophy

Yiwen Dong, Joanna Jiaqi Zou, Jingxiao Liu, Jonathon Fagert, Mostafa Mirshekari, Linda Lowes, Megan Iammarino, Pei Zhang, Hae Young Noh

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We introduce a footstep-induced floor vibration sensing system that enables us to quantify the gait pattern of individuals with Muscular Dystrophy (MD) in non-clinical settings. MD is a neuromuscular disorder causing progressive loss of muscle, which leads to symptoms in gait patterns such as toe-walking, frequent falls, balance difficulty, etc. Existing systems that are used for progressive tracking include pressure mats, wearable devices, or direct observation by healthcare professionals. However, they are limited by operational requirements including dense deployment, users' device carrying, special training, etc. To overcome these limitations, we introduce a new approach that senses floor vibrations induced by human footsteps. Gait symptoms in these footsteps are reflected by the vibration signals, which enables monitoring of gait health for individuals with MD. Our approach is non-intrusive, unrestricted by line-of-sight, and thus suitable for in-home deployment. To develop our approach, we characterize the gait pattern of individuals with MD using vibration signals, and infer the health state of the patients based on both symptom-based and signal-based features. However, there are two main challenges: 1) different aspects of human gaits are mixed up in footstep-induced floor vibrations; and 2) structural heterogeneity distorts vibration propagation and attenuation through the floor medium. To overcome the first challenge, we characterize the symptom-based gait features of the footstep-induced floor vibration specific to MD. To minimize the performance inconsistency across different sensing locations in the building, we reduce the structural effects by removing the free-vibration phase due to structural damping. With these two challenges addressed, we evaluate our system performance by conducting a real-world experiment with six patients with MD and seven healthy participants. Our approach achieved 96% accuracy in predicting whether the footstep was from a patient with MD.

Original languageEnglish (US)
Title of host publicationUbiComp/ISWC 2020 Adjunct - Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers
PublisherAssociation for Computing Machinery
Pages525-531
Number of pages7
ISBN (Electronic)9781450380768
DOIs
StatePublished - Sep 10 2020
Externally publishedYes
Event2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and 2020 ACM International Symposium on Wearable Computers, UbiComp/ISWC 2020 - Virtual, Online, Mexico
Duration: Sep 12 2020Sep 17 2020

Publication series

NameUbiComp/ISWC 2020 Adjunct - Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers

Conference

Conference2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and 2020 ACM International Symposium on Wearable Computers, UbiComp/ISWC 2020
Country/TerritoryMexico
CityVirtual, Online
Period9/12/209/17/20

Keywords

  • floor vibration sensing
  • gait health monitoring
  • muscular dystrophy
  • structural vibration

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Software
  • Hardware and Architecture

Fingerprint

Dive into the research topics of 'MD-Vibe: Physics-informed analysis of patient-induced structural vibration data for monitoring gait health in individuals with muscular dystrophy'. Together they form a unique fingerprint.

Cite this