Matrix factorization with scale-invariant parameters

Guangxiang Zeng, Hengshu Zhu, Qi Liu, Ping Luo, Enhong Chen, Tong Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Tuning hyper-parameters for large-scale matrix factorization (MF) is very time consuming and sometimes unacceptable. Intuitively, we want to tune hyper-parameters on small sub-matrix sample and then exploit them into the original large-scale matrix. However, most of existing MF methods are scale-variant, which means the optimal hyperparameters usually change with the different scale of matrices. To this end, in this paper we propose a scale-invariant parametric MF method, where a set of scale-invariant parameters is defined for model complexity regularization. Therefore, the proposed method can free us from tuning hyper-parameters on large-scale matrix, and achieve a good performance in a more efficient way. Extensive experiments on real-world dataset clearly validate both the effectiveness and efficiency of our method.

Original languageEnglish (US)
Title of host publicationIJCAI 2015 - Proceedings of the 24th International Joint Conference on Artificial Intelligence
EditorsMichael Wooldridge, Qiang Yang
PublisherInternational Joint Conferences on Artificial Intelligence
Pages4017-4024
Number of pages8
ISBN (Electronic)9781577357384
StatePublished - 2015
Externally publishedYes
Event24th International Joint Conference on Artificial Intelligence, IJCAI 2015 - Buenos Aires, Argentina
Duration: Jul 25 2015Jul 31 2015

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
Volume2015-January
ISSN (Print)1045-0823

Other

Other24th International Joint Conference on Artificial Intelligence, IJCAI 2015
Country/TerritoryArgentina
CityBuenos Aires
Period7/25/157/31/15

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Matrix factorization with scale-invariant parameters'. Together they form a unique fingerprint.

Cite this