Masterless soft lithography: Patterning UV/Ozone-induced adhesion on poly(dimethylsiloxane) surfaces

William R. Childs, Michael J. Motala, Keon Jae Lee, Ralph G. Nuzzo

Research output: Contribution to journalArticlepeer-review


A novel microreactor-based photomask capable of effecting high resolution, large area patterning of UV/ozone (UVO) treatments of poly(dimethylsiloxane) (PDMS) surfaces is described. This tool forms the basis of two new soft lithographic patterning techniques that significantly extend the design rules of decal transfer lithography (DTL). The first technique, photodefined cohesive mechanical failure, fuses the design rules of photolithography with the contact-based adhesive transfer of PDMS in DTL. In a second powerful variation, the UVO masks described in this work enable a masterless soft lithographic patterning process. This latter method, UVO-patterned adhesive transfer, allows the direct transfer of PDMS-based polymer microstructures from a slab of polymer to silicon and other material surfaces. Both methods exploit the improved process qualities that result from the use of a deuterium discharge lamp to affect the UVO treatment to pattern complex, large area PDMS patterns with limiting feature sizes extending well below 1 μm (≥0.3 μm). The use of these structures as resists is demonstrated for the patterning of metal thin films. A time-of-flight secondary ion mass spectroscopy study of the process provides new insights into the mechanisms that contribute to the chemistry responsible for the interfacial adhesion of DTL transfers.

Original languageEnglish (US)
Pages (from-to)10096-10105
Number of pages10
Issue number22
StatePublished - Oct 25 2005

ASJC Scopus subject areas

  • General Materials Science
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Spectroscopy
  • Electrochemistry


Dive into the research topics of 'Masterless soft lithography: Patterning UV/Ozone-induced adhesion on poly(dimethylsiloxane) surfaces'. Together they form a unique fingerprint.

Cite this