TY - GEN
T1 - Markov-Chain Monte Carlo approximation of the Ideal Observer using generative adversarial networks
AU - Zhou, Weimin
AU - Anastasio, Mark A.
N1 - Publisher Copyright:
© 2020 SPIE.
PY - 2020
Y1 - 2020
N2 - The Ideal Observer (IO) performance has been advocated when optimizing medical imaging systems for signal detection tasks. However, analytical computation of the IO test statistic is generally intractable. To approximate the IO test statistic, sampling-based methods that employ Markov-Chain Monte Carlo (MCMC) techniques have been developed. However, current applications of MCMC techniques have been limited to several object models such as a lumpy object model and a binary texture model, and it remains unclear how MCMC methods can be implemented with other more sophisticated object models. Deep learning methods that employ generative adversarial networks (GANs) hold great promise to learn stochastic object models (SOMs) from image data. In this study, we described a method to approximate the IO by applying MCMC techniques to SOMs learned by use of GANs. The proposed method can be employed with arbitrary object models that can be learned by use of GANs, thereby the domain of applicability of MCMC techniques for approximating the IO performance is extended. In this study, both signal-known-exactly (SKE) and signal-known-statistically (SKS) binary signal detection tasks are considered. The IO performance computed by the proposed method is compared to that computed by the conventional MCMC method. The advantages of the proposed method are discussed.
AB - The Ideal Observer (IO) performance has been advocated when optimizing medical imaging systems for signal detection tasks. However, analytical computation of the IO test statistic is generally intractable. To approximate the IO test statistic, sampling-based methods that employ Markov-Chain Monte Carlo (MCMC) techniques have been developed. However, current applications of MCMC techniques have been limited to several object models such as a lumpy object model and a binary texture model, and it remains unclear how MCMC methods can be implemented with other more sophisticated object models. Deep learning methods that employ generative adversarial networks (GANs) hold great promise to learn stochastic object models (SOMs) from image data. In this study, we described a method to approximate the IO by applying MCMC techniques to SOMs learned by use of GANs. The proposed method can be employed with arbitrary object models that can be learned by use of GANs, thereby the domain of applicability of MCMC techniques for approximating the IO performance is extended. In this study, both signal-known-exactly (SKE) and signal-known-statistically (SKS) binary signal detection tasks are considered. The IO performance computed by the proposed method is compared to that computed by the conventional MCMC method. The advantages of the proposed method are discussed.
KW - Generative adversarial networks
KW - Ideal observer
KW - Markov-Chain monte carlo
KW - Signal detection theory
UR - http://www.scopus.com/inward/record.url?scp=85085247649&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85085247649&partnerID=8YFLogxK
U2 - 10.1117/12.2549732
DO - 10.1117/12.2549732
M3 - Conference contribution
AN - SCOPUS:85085247649
T3 - Progress in Biomedical Optics and Imaging - Proceedings of SPIE
BT - Medical Imaging 2020
A2 - Samuelson, Frank W.
A2 - Taylor-Phillips, Sian
PB - SPIE
T2 - Medical Imaging 2020: Image Perception, Observer Performance, and Technology Assessment
Y2 - 19 February 2020 through 20 February 2020
ER -