Abstract
Currently deployed petascale supercomputers typically use toroidal network topologies in three or more dimensions. While these networks perform well for topology-agnostic codes on a few thousand nodes, leadership machines with 20,000 nodes require topology awareness to avoid network contention for communication-intensive codes. Topology adaptation is complicated by irregular node allocation shapes and holes due to dedicated input/output nodes or hardware failure. In the context of the popular molecular dynamics program NAMD, we present methods for mapping a periodic 3-D grid of fixed-size spatial decomposition domains to 3-D Cray Gemini and 5-D IBM Blue Gene/Q toroidal networks to enable hundred-million atom full machine simulations, and to similarly partition node allocations into compact domains for smaller simulations using multiple copy algorithms. Additional enabling techniques are discussed and performance is reported for NCSA Blue Waters, ORNL Titan, ANL Mira, TACC Stampede, and NERSC Edison.
Original language | English (US) |
---|---|
Article number | 7012994 |
Pages (from-to) | 81-91 |
Number of pages | 11 |
Journal | International Conference for High Performance Computing, Networking, Storage and Analysis, SC |
Volume | 2015-January |
Issue number | January |
DOIs | |
State | Published - Jan 16 2014 |
Event | International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2014 - New Orleans, United States Duration: Nov 16 2014 → Nov 21 2014 |
ASJC Scopus subject areas
- Computer Networks and Communications
- Computer Science Applications
- Hardware and Architecture
- Software