Mapping the spatial distribution of charge carriers in quantum-confined heterostructures

Research output: Contribution to journalArticle

Abstract

Quantum-confined nanostructures are considered 'artificial atoms' because the wavefunctions of their charge carriers resemble those of atomic orbitals. For multiple-domain heterostructures, however, carrier wavefunctions are more complex and still not well understood. We have prepared a unique series of cation-exchanged HgxCd1xTe quantum dots (QDs) and seven epitaxial core-shell QDs and measured their first and second exciton peak oscillator strengths as a function of size and chemical composition. A major finding is that carrier locations can be quantitatively mapped and visualized during shell growth or cation exchange simply using absorption transition strengths. These results reveal that a broad range of quantum heterostructures with different internal structures and band alignments exhibit distinct carrier localization patterns that can be used to further improve the performance of optoelectronic devices and enhance the brightness of QD probes for bioimaging.

Original languageEnglish (US)
Article number4506
JournalNature communications
Volume5
DOIs
StatePublished - Jul 31 2014

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Mapping the spatial distribution of charge carriers in quantum-confined heterostructures'. Together they form a unique fingerprint.

  • Cite this