Abstract
We prove that the elliptic maximal function maps the Sobolev space W4,η(ℝ2) into L4(ℝ2) for all η > 1/6. The main ingredients of the proof are an analysis of the intersection properties of elliptic annuli and a combinatorial method of Kolasa and Wolff.
Original language | English (US) |
---|---|
Pages (from-to) | 221-234 |
Number of pages | 14 |
Journal | Revista Matematica Iberoamericana |
Volume | 19 |
Issue number | 1 |
DOIs | |
State | Published - 2003 |
Externally published | Yes |
Keywords
- Circular maximal function
- Multiparameter maximal functions
- Sobolev space estimates
ASJC Scopus subject areas
- Mathematics(all)