Mapping Circumstellar Magnetic Fields of Late-type Evolved Stars with the Goldreich-Kylafis Effect: CARMA Observations at λ1.3 mm of R Crt and R Leo

Ko Yun Huang, Athol J. Kemball, Wouter H.T. Vlemmings, Shih Ping Lai, Louis Yang, Iván Agudo

Research output: Contribution to journalArticlepeer-review

Abstract

Mapping magnetic fields is the key to resolving the unclear physical picture of circumstellar magnetic fields in late-type evolved stars. Observations of linearly polarized emission from thermal molecular line transitions due to the Goldreich-Kylafis (G-K) effect provide valuable insights into the magnetic field geometry in these sources that are complementary to other key studies. In this paper, we present the detection of spectral-line polarization from both the thermal J = 2-1 CO line and the v = 1, J = 5-4 SiO maser line toward two thermal-pulsating asymptotic giant branch stars, R Crt and R Leo. The observed fractional linear polarization in the CO emission is measured as m l ∼ 3.1% and m l ∼ 9.7% for R Crt and R Leo, respectively. A circumstellar envelope (CSE) model profile and the associated parameters are estimated and used as input to a more detailed modeling of the predicted linear polarization expected from the G-K effect. The observed thermal line polarization level is consistent with the predicted results from the G-K model for R Crt; additional effects need to be considered for R Leo.

Original languageEnglish (US)
Article number152
JournalAstrophysical Journal
Volume899
Issue number2
DOIs
StatePublished - Aug 20 2020

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint Dive into the research topics of 'Mapping Circumstellar Magnetic Fields of Late-type Evolved Stars with the Goldreich-Kylafis Effect: CARMA Observations at λ1.3 mm of R Crt and R Leo'. Together they form a unique fingerprint.

Cite this