TY - GEN
T1 - Manufacturability constraint formulation for design under hybrid additive-subtractive manufacturing
AU - Patterson, Albert E.
AU - Allison, James T.
N1 - Publisher Copyright:
Copyright © 2018 ASME
PY - 2018
Y1 - 2018
N2 - This article addresses the generation and use of manufacturability constraints for design under hybrid additive/subtractive processes. A method for discovering the natural constraints inherent in both additive and subtractive processes is developed; once identified, these guidelines can be converted into mathematical manufacturability constraints to be used in the formulation of design problems. This ability may prove to be useful by enhancing the practicality of designs under realistic hybrid manufacturing conditions, and supporting better integration of classic design-for-manufacturability principles with design and solution methods. A trade-off between design manufacturability and elegance has been noted by many scholars. It is posited that using realistic manufacturing conditions to drive design generation may help manage this trade-off more effectively, focusing exploration efforts on designs that satisfy more comprehensive manufacturability considerations. While this study focuses on two-step AM-SM hybrid processes, the technique extends to other processes, including single-process fabrication. Two case studies are presented here to demonstrate the new constraint generation concept, including formulation of shape and topology optimization problems, comparison of results, and the physical fabrication of hybrid-manufactured products. Ongoing work is aimed at rigorous comparison between candidate constraint generation strategies and the properties of the constraint mapping.
AB - This article addresses the generation and use of manufacturability constraints for design under hybrid additive/subtractive processes. A method for discovering the natural constraints inherent in both additive and subtractive processes is developed; once identified, these guidelines can be converted into mathematical manufacturability constraints to be used in the formulation of design problems. This ability may prove to be useful by enhancing the practicality of designs under realistic hybrid manufacturing conditions, and supporting better integration of classic design-for-manufacturability principles with design and solution methods. A trade-off between design manufacturability and elegance has been noted by many scholars. It is posited that using realistic manufacturing conditions to drive design generation may help manage this trade-off more effectively, focusing exploration efforts on designs that satisfy more comprehensive manufacturability considerations. While this study focuses on two-step AM-SM hybrid processes, the technique extends to other processes, including single-process fabrication. Two case studies are presented here to demonstrate the new constraint generation concept, including formulation of shape and topology optimization problems, comparison of results, and the physical fabrication of hybrid-manufactured products. Ongoing work is aimed at rigorous comparison between candidate constraint generation strategies and the properties of the constraint mapping.
UR - http://www.scopus.com/inward/record.url?scp=85056885980&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85056885980&partnerID=8YFLogxK
U2 - 10.1115/DETC2018-85637
DO - 10.1115/DETC2018-85637
M3 - Conference contribution
AN - SCOPUS:85056885980
T3 - Proceedings of the ASME Design Engineering Technical Conference
BT - 23rd Design for Manufacturing and the Life Cycle Conference; 12th International Conference on Micro- and Nanosystems
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2018
Y2 - 26 August 2018 through 29 August 2018
ER -