Manufacturability constraint formulation for design under hybrid additive-subtractive manufacturing

Albert E. Patterson, James T. Allison

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This article addresses the generation and use of manufacturability constraints for design under hybrid additive/subtractive processes. A method for discovering the natural constraints inherent in both additive and subtractive processes is developed; once identified, these guidelines can be converted into mathematical manufacturability constraints to be used in the formulation of design problems. This ability may prove to be useful by enhancing the practicality of designs under realistic hybrid manufacturing conditions, and supporting better integration of classic design-for-manufacturability principles with design and solution methods. A trade-off between design manufacturability and elegance has been noted by many scholars. It is posited that using realistic manufacturing conditions to drive design generation may help manage this trade-off more effectively, focusing exploration efforts on designs that satisfy more comprehensive manufacturability considerations. While this study focuses on two-step AM-SM hybrid processes, the technique extends to other processes, including single-process fabrication. Two case studies are presented here to demonstrate the new constraint generation concept, including formulation of shape and topology optimization problems, comparison of results, and the physical fabrication of hybrid-manufactured products. Ongoing work is aimed at rigorous comparison between candidate constraint generation strategies and the properties of the constraint mapping.

Original languageEnglish (US)
Title of host publication23rd Design for Manufacturing and the Life Cycle Conference; 12th International Conference on Micro- and Nanosystems
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791851791
DOIs
StatePublished - 2018
EventASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2018 - Quebec City, Canada
Duration: Aug 26 2018Aug 29 2018

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume4

Other

OtherASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2018
Country/TerritoryCanada
CityQuebec City
Period8/26/188/29/18

ASJC Scopus subject areas

  • Mechanical Engineering
  • Computer Graphics and Computer-Aided Design
  • Computer Science Applications
  • Modeling and Simulation

Fingerprint

Dive into the research topics of 'Manufacturability constraint formulation for design under hybrid additive-subtractive manufacturing'. Together they form a unique fingerprint.

Cite this