Manothermosonication (MTS) treatment by a continuous-flow system: Effects on the degradation kinetics and microstructural characteristics of citrus pectin

Wenjun Wang, Weijun Chen, Ozan Kahraman, Thunthacha Chantapakul, Tian Ding, Donghong Liu, Hao Feng

Research output: Contribution to journalArticle

Abstract

Modified pectin (MP) was reported to have increased bioactivities compared with the original one. However, traditional modification methods such as using an acidic solvent with heating are not only costly but causing severe pollution as well. In this study, manothermosonication (MTS) with a continuous-flow system was utilized to modify citrus pectin. The citrus pectin (5 g/L) treated by MTS (3.23 W/mL, 400 kPa, 45 °C) exhibited lower molecular weight (Mw, 248.17 kDa) and PDI (2.76). The pectin treated by MTS (400 KPa, 45 °C, 5 min) exhibited a narrower Mw distribution and lowered more Mw (48.8%) than the ultrasound(US)-treated (23.8%). Pectin degradation data fitted well to kinetic model of 1/Mwt −1/Mw0 = kt (45–65 °C). A lower activation energy of 13.33 kJ/mol was observed in the MTS treatment compared with the US-treated (16.38 kJ/mol). The MTS-treated pectin lowered the degree of methoxylation (DM), mol% of rhamnose and galacturonic acid (GalA) while increased mol% of galactose (Gal), xylose (Xyl), and arabinose (Ara). The 1H and 13C nuclear magnetic resonance showed that MTS could not alter the primary structures of citrus pectin. However, an elevated (Gal + Ara)/Rha and reduced GalA/(Rha + Ara + Gal + Xyl) molar ratios after MTS suggested that MTS resulted in more significant degradation on the main chains and less on the side chains of pectin, in agreement with the result of atomic force microscope. Moreover, the MTS-treated pectin exhibited a higher 1,1-diphenyl-2picryl hydrazyl radical scavenging capacity compared with original pectin.

Original languageEnglish (US)
Article number104973
JournalUltrasonics Sonochemistry
Volume63
DOIs
StatePublished - May 2020

Keywords

  • Atomic force microscopy
  • Citrus pectin
  • Manothermosonication
  • Structure
  • Ultrasound

ASJC Scopus subject areas

  • Chemical Engineering (miscellaneous)
  • Environmental Chemistry
  • Radiology Nuclear Medicine and imaging
  • Acoustics and Ultrasonics
  • Organic Chemistry
  • Inorganic Chemistry

Fingerprint Dive into the research topics of 'Manothermosonication (MTS) treatment by a continuous-flow system: Effects on the degradation kinetics and microstructural characteristics of citrus pectin'. Together they form a unique fingerprint.

  • Cite this