Manganese Oxide Nanozyme-Doped Diatom for Safe and Efficient Treatment of Peri-Implantitis

Eun Hyuk Lee, Sang Woo Lee, Yongbeom Seo, Yu Heng Deng, Young Jun Lim, Ho Beom Kwon, Kyungpyo Park, Hyunjoon Kong, Myung Joo Kim

Research output: Contribution to journalArticlepeer-review

Abstract

Peri-implantitis is a major cause of dental implant failure. Bacterial biofilm contamination on the implant induces surrounding bone resorption and soft tissue inflammation, leading to severe deterioration of oral health. However, conventional biofilm removal procedures, such as mechanical decontamination and antiseptic application, are not effective enough to induce reosseointegration on decontaminated implant surfaces. This is due to (1) incomplete decontamination of the biofilm from inaccessible areas and (2) physicochemical alteration of implant surfaces caused by decontamination procedures. Herein, a safe and effective therapeutic approach for peri-implantitis is developed, which involves decontamination of implant-bound biofilms using the kinetic energy of microsized oxygen bubbles generated from the catalytic reaction between hydrogen peroxide (H2O2) and manganese oxide (MnO2) nanozyme sheet-doped silica diatom microparticles (Diatom Microbubbler, DM). Rapidly moving microsized DM particles are able to penetrate narrow spaces between implant screws, exerting just the right amount of force to entirely destroy biofilms without harming the surrounding mucosa or implant surfaces, as opposed to conventional antiseptics such as chlorhexidine or 3% H2O2 when used alone. Consequently, decontamination with DM facilitates successful reosseointegration on the peri-implantitis-affected implant surface. In summary, our new DM-based therapeutic approach will become a promising alternative to resolve clinically challenging aspects of peri-implantitis.

Original languageEnglish (US)
Pages (from-to)27634-27650
Number of pages17
JournalACS Applied Materials and Interfaces
Volume14
Issue number24
DOIs
StatePublished - Jun 22 2022
Externally publishedYes

Keywords

  • biofilm
  • diatom
  • implant decontamination
  • manganese oxide
  • nanozyme
  • peri-implantitis
  • reosseointegration

ASJC Scopus subject areas

  • General Materials Science

Fingerprint

Dive into the research topics of 'Manganese Oxide Nanozyme-Doped Diatom for Safe and Efficient Treatment of Peri-Implantitis'. Together they form a unique fingerprint.

Cite this