TY - JOUR
T1 - Management zone-based estimation of positive and negative nitrous oxide flux in organic corn fields
AU - Xia, Yushu
AU - Wander, Michelle
N1 - Funding Information:
We thank Allen Williams for generously allowing and helping us to carry out field experiments on his farms. We would also like to acknowledge the field and lab help from interns and visiting students including Ana Laura Silva de Sousa, AnnaMae Dziallo, Autumn Homles, Jenny Gray, Josh Lim, Junyu Lao, Jeff Roche, Kelly Aves, Mario Nunez, Qianchen Zhou, Qianqian Chen, Shumin Wang, and Wenyu Liu.
Publisher Copyright:
© 2022 The Authors. Soil Science Society of America Journal published by Wiley Periodicals LLC on behalf of Soil Science Society of America.
PY - 2022/7/1
Y1 - 2022/7/1
N2 - Accurate estimation of field-scale nitrous oxide (N2O) fluxes is hindered by their considerable variability and the fact that soils can be both sources and sinks for N2O. This is particularly challenging for organic systems that have complex rotations and inputs. This study used digital soil mapping and survey datasets to explore spatial controls of N2O “hot moments” induced by precipitation with strategic sampling designed to identify covariates that influence N2O emission patterns. Soil N2O fluxes after rain events were measured within three management zones (MZs, “High,” “Medium,” “Low”) delineated by crop productivity, soil fertility, and hydrological features in eight organic fields during the 2018 and 2019 corn (Zea mays L.) growing seasons. Hot moments typically occurring 1 d after rain events included both positive and negative N2O fluxes. The MZ-based design identified regions with different patterns in positive and negative flux, with hotspots for both being co-located with areas of poorer drainage and higher soil fertility. Covariates that best explained hot moments included corn growth stage, soil moisture, slope, texture, and soil organic matter. Negative fluxes were large enough to offset positive fluxes so that averaged net N2O fluxes were only significantly different between the “High” and “Low” MZs. Had negative fluxes been omitted, averaged N2O fluxes would have increased estimates by 37%. Processes that lead to N2O consumptions must be better quantified to improve the estimation of management-associated net N2O flux. Use of strategic sampling can efficiently capture needed information, but spatial and temporal weighting is needed to scale up results.
AB - Accurate estimation of field-scale nitrous oxide (N2O) fluxes is hindered by their considerable variability and the fact that soils can be both sources and sinks for N2O. This is particularly challenging for organic systems that have complex rotations and inputs. This study used digital soil mapping and survey datasets to explore spatial controls of N2O “hot moments” induced by precipitation with strategic sampling designed to identify covariates that influence N2O emission patterns. Soil N2O fluxes after rain events were measured within three management zones (MZs, “High,” “Medium,” “Low”) delineated by crop productivity, soil fertility, and hydrological features in eight organic fields during the 2018 and 2019 corn (Zea mays L.) growing seasons. Hot moments typically occurring 1 d after rain events included both positive and negative N2O fluxes. The MZ-based design identified regions with different patterns in positive and negative flux, with hotspots for both being co-located with areas of poorer drainage and higher soil fertility. Covariates that best explained hot moments included corn growth stage, soil moisture, slope, texture, and soil organic matter. Negative fluxes were large enough to offset positive fluxes so that averaged net N2O fluxes were only significantly different between the “High” and “Low” MZs. Had negative fluxes been omitted, averaged N2O fluxes would have increased estimates by 37%. Processes that lead to N2O consumptions must be better quantified to improve the estimation of management-associated net N2O flux. Use of strategic sampling can efficiently capture needed information, but spatial and temporal weighting is needed to scale up results.
UR - http://www.scopus.com/inward/record.url?scp=85131531147&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85131531147&partnerID=8YFLogxK
U2 - 10.1002/saj2.20416
DO - 10.1002/saj2.20416
M3 - Article
AN - SCOPUS:85131531147
SN - 0361-5995
VL - 86
SP - 1043
EP - 1057
JO - Soil Science Society of America Journal
JF - Soil Science Society of America Journal
IS - 4
ER -