TY - JOUR
T1 - Maize and soybean response to phosphorus fertilization with blends of struvite and monoammonium phosphate
AU - Hertzberger, Allan J.
AU - Cusick, Roland D.
AU - Margenot, Andrew J.
N1 - Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature.
PY - 2021/4
Y1 - 2021/4
N2 - Aims: Struvite (MgNH4PO4·6H2O), a low water solubility (<3%) mineral that is increasingly recovered from wastewater treatment plants, has potential to be used as a slow release ammonium phosphate fertilizer, especially when blended with highly water soluble phosphorus (P) fertilizers such as monoammonium phosphate (MAP). Methods: Maize and soybean were fertilized using a gradient of struvite substitution for MAP, entailing five struvite: MAP blends in a factorial combination with struvite granule size (1.5, 3.0 mm diameter) and fertilizer placement (incorporation, banding). Crop biomass, and P and N uptake (total, concentration) were used to evaluate crop response, and post-harvest soil Mehlich-3 P was measured to assess soluble P loss risk. Results: Maize biomass response was similar using up to 50% struvite and similar in soybean using up to 25% struvite. Total P uptake by maize was similar across 0–75% struvite blends, but significantly lower for 100% struvite. Maize apparent fertilizer P uptake and apparent fertilizer P uptake efficiency was greatest for 100% MAP. Despite differences in biomass, soybean apparent fertilizer P uptake and apparent P use efficiency were similar across struvite blends. Soybean P uptake was significantly greater when fertilized with 100% struvite than with 25 and 50% struvite. Inverse correlation of plant P and N concentrations with biomass indicated a biomass dilution effect. Residual soil Mehlich-3 P decreased with increasing struvite substitution of MAP. Conclusions: Struvite:MAP blends (25–50% struvite) appear to lower soluble P loss risk compared to MAP without restricting early season (vegetative) growth of maize and soybean, and this can differ by crop species.
AB - Aims: Struvite (MgNH4PO4·6H2O), a low water solubility (<3%) mineral that is increasingly recovered from wastewater treatment plants, has potential to be used as a slow release ammonium phosphate fertilizer, especially when blended with highly water soluble phosphorus (P) fertilizers such as monoammonium phosphate (MAP). Methods: Maize and soybean were fertilized using a gradient of struvite substitution for MAP, entailing five struvite: MAP blends in a factorial combination with struvite granule size (1.5, 3.0 mm diameter) and fertilizer placement (incorporation, banding). Crop biomass, and P and N uptake (total, concentration) were used to evaluate crop response, and post-harvest soil Mehlich-3 P was measured to assess soluble P loss risk. Results: Maize biomass response was similar using up to 50% struvite and similar in soybean using up to 25% struvite. Total P uptake by maize was similar across 0–75% struvite blends, but significantly lower for 100% struvite. Maize apparent fertilizer P uptake and apparent fertilizer P uptake efficiency was greatest for 100% MAP. Despite differences in biomass, soybean apparent fertilizer P uptake and apparent P use efficiency were similar across struvite blends. Soybean P uptake was significantly greater when fertilized with 100% struvite than with 25 and 50% struvite. Inverse correlation of plant P and N concentrations with biomass indicated a biomass dilution effect. Residual soil Mehlich-3 P decreased with increasing struvite substitution of MAP. Conclusions: Struvite:MAP blends (25–50% struvite) appear to lower soluble P loss risk compared to MAP without restricting early season (vegetative) growth of maize and soybean, and this can differ by crop species.
KW - Glycine max L
KW - Magnesium ammonium phosphate
KW - Mehlich
KW - Zea mays L
UR - http://www.scopus.com/inward/record.url?scp=85100057901&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85100057901&partnerID=8YFLogxK
U2 - 10.1007/s11104-021-04830-2
DO - 10.1007/s11104-021-04830-2
M3 - Article
AN - SCOPUS:85100057901
SN - 0032-079X
VL - 461
SP - 547
EP - 563
JO - Plant and Soil
JF - Plant and Soil
IS - 1-2
ER -