Abstract
Binding of peptide epitopes to major histocompatibility complex proteins involves multiple hydrogen bond interactions between the peptide main chain and major histocompatibility complex residues. The crystal structure of HLA-DQ2 complexed with the αI-gliadin epitope (LQPFPQPELPY) revealed four hydrogen bonds between DQ2 and peptide main chain amides. This is remarkable, given that four of the nine core residues in this peptide are proline residues that cannot engage in amide hydrogen bonding. Preserving main chain hydrogen bond interactions despite the presence of multiple proline residues in gluten peptides is a key element for the HLA-DQ2 association of celiac disease. We have investigated the relative contribution of each main chain hydrogen bond interaction by preparing a series of N-methylated αI epitope analogues and measuring their binding affinity and off-rate constants to DQ2. Additionally, we measured the binding of αI-gliadin peptide analogues in which norvaline, which contains a backbone amide hydrogen bond donor, was substituted for each proline. Our results demonstrate that hydrogen bonds at P4 and P2 positions are most important for binding, whereas the hydrogen bonds at P9 and P6 make smaller contributions to the overall binding affinity. There is no evidence for a hydrogen bond between DQ2 and the P1 amide nitrogen in peptides without proline at this position. This is a unique feature of DQ2 and is likely a key parameter for preferential binding of proline-rich gluten peptides and development of celiac disease.
Original language | English (US) |
---|---|
Pages (from-to) | 21791-21796 |
Number of pages | 6 |
Journal | Journal of Biological Chemistry |
Volume | 280 |
Issue number | 23 |
DOIs | |
State | Published - Jun 10 2005 |
Externally published | Yes |
ASJC Scopus subject areas
- Biochemistry
- Molecular Biology
- Cell Biology