TY - JOUR
T1 - Magnetotransport properties near the superconductor-insulator transition in two dimensions
AU - Dalidovich, Denis
AU - Phillips, Philip
PY - 2001
Y1 - 2001
N2 - We analyze here the behavior near the two-dimensional insulator-superconductor quantum critical point in the presence of a perpendicular magnetic field. We show that with increasing field H, the quantum disordered and quantum critical regimes, in which vortex degrees of freedom are suppressed, crossover to a new magnetically activated (MA) regime, where the correlation length (formula presented) In this regime, we show that the conductivity decreases monotonically as opposed to the anticipated saturation predicted from hyperuniversality arguments. This discrepancy arises from the lack of commutativity of the frequency and temperature tending to zero limits of the conductivity. In the low-field regime such that (formula presented) and in the absence of Ohmic dissipation, where (formula presented) is a measure of the distance from the quantum critical point, the resistivity saturates to the Bose metal value found previously for Cooper pairs lacking phase coherence.
AB - We analyze here the behavior near the two-dimensional insulator-superconductor quantum critical point in the presence of a perpendicular magnetic field. We show that with increasing field H, the quantum disordered and quantum critical regimes, in which vortex degrees of freedom are suppressed, crossover to a new magnetically activated (MA) regime, where the correlation length (formula presented) In this regime, we show that the conductivity decreases monotonically as opposed to the anticipated saturation predicted from hyperuniversality arguments. This discrepancy arises from the lack of commutativity of the frequency and temperature tending to zero limits of the conductivity. In the low-field regime such that (formula presented) and in the absence of Ohmic dissipation, where (formula presented) is a measure of the distance from the quantum critical point, the resistivity saturates to the Bose metal value found previously for Cooper pairs lacking phase coherence.
UR - http://www.scopus.com/inward/record.url?scp=0035509136&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035509136&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.64.184511
DO - 10.1103/PhysRevB.64.184511
M3 - Article
AN - SCOPUS:0035509136
SN - 1098-0121
VL - 64
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 18
ER -