Magnetically aligned dust and SiO maser polarisation in the envelope of the red supergiant VY Canis Majoris

W. H.T. Vlemmings, T. Khouri, I. Martí-Vidal, D. Tafoya, A. Baudry, S. Etoka, E. M.L. Humphreys, T. J. Jones, A. Kemball, E. O'Gorman, A. F. Pérez-Sánchez, A. M.S. Richards

Research output: Contribution to journalArticlepeer-review


Aims. Polarisation observations of circumstellar dust and molecular (thermal and maser) lines provide unique information about dust properties and magnetic fields in circumstellar envelopes of evolved stars. Methods. We use Atacama Large Millimeter/submillimeter Array (ALMA) Band 5 science verification observations of the red supergiant VY CMa to study the polarisation of SiO thermal/maser lines and dust continuum at ∼1.7 mm wavelength. We analyse both linear and circular polarisation and derive the magnetic field strength and structure, assuming the polarisation of the lines originates from the Zeeman effect, and that of the dust originates from aligned dust grains. We also discuss other effects that could give rise to the observed polarisation. Results. We detect, for the first time, significant polarisation (∼3%) of the circumstellar dust emission at millimeter wavelengths. The polarisation is uniform with an electric vector position angle of ∼8°. Varying levels of linear polarisation are detected for the J = 4 - 328SiO v = 0, 1, 2, and 29SiO v = 0, 1 lines, with the strongest polarisation fraction of ∼30% found for the 29SiO v = 1 maser. The linear polarisation vectors rotate with velocity, consistent with earlier observations. We also find significant (up to ∼1%) circular polarisation in several lines, consistent with previous measurements. We conclude that the detection is robust against calibration and regular instrumental errors, although we cannot yet fully rule out non-standard instrumental effects. Conclusions. Emission from magnetically aligned grains is the most likely origin of the observed continuum polarisation. This implies that the dust is embedded in a magnetic field >13 mG. The maser line polarisation traces the magnetic field structure. The magnetic field in the gas and dust is consistent with an approximately toroidal field configuration, but only higher angular resolution observations will be able to reveal more detailed field structure. If the circular polarisation is due to Zeeman splitting, it indicates a magnetic field strength of ∼1-3 Gauss, consistent with previous maser observations.

Original languageEnglish (US)
Article numberA92
JournalAstronomy and Astrophysics
StatePublished - Jul 1 2017


  • Masers
  • Polarization
  • Stars: individual: VY CMa
  • Stars: magnetic field
  • Stars: mass-loss
  • Supergiants

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science


Dive into the research topics of 'Magnetically aligned dust and SiO maser polarisation in the envelope of the red supergiant VY Canis Majoris'. Together they form a unique fingerprint.

Cite this